GENERALIZED HARMONIC ANALYSIS¹

			Page
Introduction			2
Chapter	I.	PRECURSORS OF THE PRESENT THEORY	
	1.	Plancherel's theorem	4
	2.	Schuster's periodogram analysis	10
Chapter	II.	Spectra	
	3.	The spectrum of an arbitrary function of a single variable	16
	4.	The total spectral intensity	21
	5.	Tauberian theorems and spectral intensity	25
	6.	Bochner's generalizations of harmonic analysis and their	
		spectrum theories	37
	7.	The Hahn generalization of harmonic analysis	48
Chapter	III.	EXTENSIONS OF SPECTRUM THEORY	
	8.	Harmonic analysis in more than one dimension	56
	9.	Coherency matrices	66
	10.	Harmonic analysis and transformation groups	79
Chapter	IV.	Examples of Functions with Spectra	
	11.	Examples of functions with continuous spectra	85
	12.	Spectra depending on an infinite sequence of choices	94
	13.	Spectra and integration in function space	98
Chapter	V.	Almost Periodic Functions	
	14.	The spectrum of an almost periodic function	118
	15.	The Parseval theorem for almost periodic functions	122
	16.	The Weierstrass theorem for almost periodic functions	123
	17.	Certain generalizations of almost periodic functions	126

Reprinted from Acta Math., 55, 1930, pp. 117-258. (Courtesy of the Institut Mittag-Leffler.)

TAUBERIAN THEOREMS*

Introduc	tion		Page
Classic	T	T C	145
Chapter	1.	THE CLOSURE OF THE SET OF TRANSLATIONS OF A GIVEN	1.40
	ĩ	r Unction	149
	1. 9	Closure in Class L2	149
	2.	A sub class of Ly	151
Chapter	тт		105
	11.	ASYMPTOTIC PROPERTIES OF AVERAGES	167
	4.	Averages of bounded functions	167
	5. 6	Averages of bounded Stieltjes distributions	108
		Averages of unilaterally bounded distributions and functions	170
Chapter	Ш.	TAUBERIAN THEOREMS AND THE CONVERGENCE OF SERIES	
	~	AND INTEGRALS	174
	1.	The Hardy-Littlewood condition	174
~.	8.	The Schmidt condition	178
Chapter	IV.	TAUBERIAN THEOREMS AND PRIME NUMBER THEORY	181
	9.	Tauberian theorems and Lambert series	181
	10.	Ikehara's theorem	186
Chapter	V.	SPECIAL APPLICATIONS OF TAUBERIAN THEOREMS	192
	11.	On the proof of special Tauberian theorems	192
	12.	Examples of kernels for which Tauberian theorems hold	194
	13.	A theorem of Ramanujan	195
	14.	The summation of trigonometrical developments	197
	15.	Young's criterion for the convergence of a Fourier series	199
	16.	Tauberian theorems and asymptotic series	202
Chapter	VI.	KERNELS ALMOST OF THE CLOSED CYCLE	204
	17.	The reduction of kernels almost of the closed cycle to	
		kernels of the closed cycle	204
	18.	A Tauberian theorem of Hardy and Littlewood	206
	19.	The Tauberian theorem of Borel summation	209
Chapter	VII.	A QUASI-TAUBERIAN THEOREM	214
	20.	The quasi-Tauberian theorem	214
	21.	Applications of the quasi-Tauberian theorem	219
Chapter	VIII.	TAUBERIAN THEOREMS AND SPECTRA	221
-	22.	A further type of asymptotic behavior	221
	23.	Generalized types of summability	232
	24.	Some unsolved problems	235
Bibliography			236

Bibliography

INTRODUCTION.

Numerous important branches of mathematics and physics concern themselves with the asymptotic behavior of functions for very large or very

* Received July 20, 1931.

Reprinted from Ann. of Math., 33, 1932, pp. 1-100. (Courtesy of the Annals of Mathematics.)