PART ONE. THE CLASSICAL STATISTICAL MECHANICS

I. INTRODUCTION

\$ 1.			
·	The Nature of Statistical Mechanics	-	. 1
§ 2.	The Classical Statistical Mechanics .		. 4
§ 3.	The Quantum Statistical Mechanics	•	. 6
§ 4.	Statistical Mechanics and Thermodynamics		. 9
§ 5.	Points of View and Methods of Presentation .		. 10
	II. THE ELEMENTS OF CLASSICAL MECHAN	ICS	
\$ 6.	Introduction		16
87.	State of a System. Generalized Coordinates and Velocities	•	. 10
8.8	Hamilton's Principle and the Lagrangian Function	8.	. 17
89.	The Equations of Motion in the Lagrangian Form	•	. 19
\$ 10.	Generalized Momenta, the Hamiltonian Function, and the	Canonie	. 20 ոl
3 - 01	Equations of Motion	canome	25
8 11.	The Change in Quantities with Time. Poisson Brackets	•	. 20
\$ 12.	The Integral of Energy and the Interpretation of the Ha	miltonis	· 21
5	Function		98
\$ 13.	The Integrals of Linear and of Angular Momentum	•	. 20
8 14.	Canonical Transformations	•	. 00
\$ 15.	Integration of the Equations of Motion by Transformation	• to Cycl	. 02
0	Coordinates. Hamilton's Characteristic Function	00 0 0 0	37
\$ 16.	Integration of the Equations of Motion by Transformation	n to Co	. <i>01</i>
5 - 01	stant Coordinates and Momenta. Hamilton's Principal R	unction	30
		anovion	
II	I. STATISTICAL ENSEMBLES IN THE CLASSICAL M	[ECHA]	NICS
§ 17.	Ensemble and Phase Space		
			. 43
§ 18.	Density of Distribution in the Phase Space. Averages for	r the E	. 43 n-
§ 18.	Density of Distribution in the Phase Space. Averages for semble	r the E	. 43 n- . 45
§ 18. § 19.	Density of Distribution in the Phase Space. Averages for semble Liouville's Theorem for the Change in Density with Time	· r the E	. 43 n- . 45 . 48
§ 18. § 19. § 20.	Density of Distribution in the Phase Space. Averages for semble Liouville's Theorem for the Change in Density with Time Invariance of Density and of Extension to Canonical Transfe	· r the E · · ·	. 43 n- . 45 . 48 ns 52
§ 18. § 19. § 20. § 21.	Density of Distribution in the Phase Space. Averages for semble . Liouville's Theorem for the Change in Density with Time Invariance of Density and of Extension to Canonical Transfe Conditions for Statistical Equilibrium	the E	. 43 n- . 45 . 48 ns 52 . 55
§ 18. § 19. § 20. § 21. § 22.	Density of Distribution in the Phase Space. Averages for semble . Liouville's Theorem for the Change in Density with Time Invariance of Density and of Extension to Canonical Transfe Conditions for Statistical Equilibrium The Uniform, Microcanonical, and Canonical Ensembles	r the E	. 43 n- . 45 . 48 ns 52 . 55 . 56
§ 18. § 19. § 20. § 21. § 22.	 Density of Distribution in the Phase Space. Averages for semble Liouville's Theorem for the Change in Density with Time Invariance of Density and of Extension to Canonical Transfer Conditions for Statistical Equilibrium The Uniform, Microcanonical, and Canonical Ensembles (a) The Uniform Ensemble 	r the E	. 43 n- . 45 . 48 ns 52 . 55 . 56 . 56
§ 18. § 19. § 20. § 21. § 22.	 Density of Distribution in the Phase Space. Averages for semble Liouville's Theorem for the Change in Density with Time Invariance of Density and of Extension to Canonical Transfer Conditions for Statistical Equilibrium The Uniform, Microcanonical, and Canonical Ensembles (a) The Uniform Ensemble (b) The Microcanonical Ensemble 	the E	. 43 n- . 45 . 48 as 52 . 55 . 56 . 56 . 57
§ 18. § 19. § 20. § 21. § 22.	 Density of Distribution in the Phase Space. Averages for semble Liouville's Theorem for the Change in Density with Time Invariance of Density and of Extension to Canonical Transfer Conditions for Statistical Equilibrium The Uniform, Microcanonical, and Canonical Ensembles (a) The Uniform Ensemble (b) The Microcanonical Ensemble (c) The Canonical Ensemble 	the E	. 43 n- . 45 . 48 as 52 . 55 . 56 . 56 . 56 . 57 . 58
\$ 18. \$ 19. \$ 20. \$ 21. \$ 22. \$ 22.	 Density of Distribution in the Phase Space. Averages for semble Liouville's Theorem for the Change in Density with Time Invariance of Density and of Extension to Canonical Transfer Conditions for Statistical Equilibrium The Uniform, Microcanonical, and Canonical Ensembles (a) The Uniform Ensemble (b) The Microcanonical Ensemble (c) The Canonical Ensemble The Fundamental Hypothesis of Equal a priori Probabilities 	r the E	. 43 n- . 45 . 48 ns 52 . 55 . 56 . 56 . 56 . 57 . 58
\$ 18. \$ 19. \$ 20. \$ 21. \$ 22. \$ 22. \$ 23.	 Density of Distribution in the Phase Space. Averages for semble Liouville's Theorem for the Change in Density with Time Invariance of Density and of Extension to Canonical Transfer Conditions for Statistical Equilibrium The Uniform, Microcanonical, and Canonical Ensembles (a) The Uniform Ensemble (b) The Microcanonical Ensemble (c) The Canonical Ensemble (c) The Canonical Ensemble The Fundamental Hypothesis of Equal a priori Probabilit Phase Space 	r the E	. 43 n- . 45 . 48 ns 52 . 55 . 56 . 56 . 56 . 57 . 58 ne . 59
\$ 18. \$ 19. \$ 20. \$ 21. \$ 22. \$ 22. \$ 23. \$ 24.	 Density of Distribution in the Phase Space. Averages for semble Liouville's Theorem for the Change in Density with Time Invariance of Density and of Extension to Canonical Transfer Conditions for Statistical Equilibrium The Uniform, Microcanonical, and Canonical Ensembles (a) The Uniform Ensemble (b) The Microcanonical Ensemble (c) The Canonical Ensemble (c) The Canonical Ensemble The Fundamental Hypothesis of Equal a priori Probabilit Phase Space System of Interest and Representative Ensemble 	r the E	. 43 n- . 45 . 48 ns 52 . 55 . 56 . 56 . 56 . 57 . 58 ne . 59 . 62
\$ 18. \$ 19. \$ 20. \$ 21. \$ 22. \$ 23. \$ 24. \$ 25.	 Density of Distribution in the Phase Space. Averages for semble Liouville's Theorem for the Change in Density with Time Invariance of Density and of Extension to Canonical Transfer Conditions for Statistical Equilibrium The Uniform, Microcanonical, and Canonical Ensembles (a) The Uniform Ensemble (b) The Microcanonical Ensemble (c) The Canonical Ensemble (c) The Canonical Ensemble (c) The Canonical Ensemble (d) The Fundamental Hypothesis of Equal a priori Probability Phase Space System of Interest and Representative Ensemble Validity of Statistical Mechanics 	r the E	. 43 n- . 45 . 48 ns 52 . 55 . 56 . 56 . 56 . 57 . 58 no . 59 . 62 . 63
\$ 18. \$ 19. \$ 20. \$ 21. \$ 22. \$ 23. \$ 23. \$ 24. \$ 25.	 Density of Distribution in the Phase Space. Averages for semble Liouville's Theorem for the Change in Density with Time Invariance of Density and of Extension to Canonical Transfer Conditions for Statistical Equilibrium The Uniform, Microcanonical, and Canonical Ensembles (a) The Uniform Ensemble (b) The Microcanonical Ensemble (c) The Canonical Ensemble (c) The Canonical Ensemble (d) The Fundamental Hypothesis of Equal a priori Probability Phase Space System of Interest and Representative Ensemble Validity of Statistical Mechanics 	r the E	. 43 n- . 45 . 48 ns 52 . 55 . 56 . 56 . 56 . 57 . 58 no . 59 . 62 . 63
\$ 18. \$ 19. \$ 20. \$ 21. \$ 22. \$ 22. \$ 23. \$ 24. \$ 25.	 Density of Distribution in the Phase Space. Averages for semble Liouville's Theorem for the Change in Density with Time Invariance of Density and of Extension to Canonical Transfer Conditions for Statistical Equilibrium The Uniform, Microcanonical, and Canonical Ensembles (a) The Uniform Ensemble (b) The Microcanonical Ensemble (c) The Canonical Ensemble (c) The Canonical Ensemble The Fundamental Hypothesis of Equal a priori Probability Phase Space System of Interest and Representative Ensemble Validity of Statistical Mechanics IV. THE MAXWELL-BOLTZMANN DISTRIBUTION 	r the E	. 43 n- . 45 . 48 ns 52 . 55 . 56 . 56 . 56 . 57 . 58 no . 59 . 62 . 63
\$ 18. \$ 19. \$ 20. \$ 21. \$ 22. \$ 22. \$ 23. \$ 24. \$ 25. \$ 26.	 Density of Distribution in the Phase Space. Averages for semble Liouville's Theorem for the Change in Density with Time Invariance of Density and of Extension to Canonical Transfer Conditions for Statistical Equilibrium The Uniform, Microcanonical, and Canonical Ensembles (a) The Uniform Ensemble (b) The Microcanonical Ensemble (c) The Canonical Ensemble (c) The Canonical Ensemble System of Interest and Representative Ensemble Validity of Statistical Mechanics IV. THE MAXWELL-BOLTZMANN DISTRIBUTION 	r the E ormation ies in th	. 43 n- . 45 . 48 ns 52 . 55 . 56 . 56 . 57 . 58 no . 59 . 62 . 63 m 71
\$ 18. \$ 19. \$ 20. \$ 21. \$ 22. \$ 22. \$ 23. \$ 24. \$ 25. \$ 26. \$ 27.	 Density of Distribution in the Phase Space. Averages for semble Liouville's Theorem for the Change in Density with Time Invariance of Density and of Extension to Canonical Transfer Conditions for Statistical Equilibrium The Uniform, Microcanonical, and Canonical Ensembles (a) The Uniform Ensemble (b) The Microcanonical Ensemble (c) The Canonical Ensemble (c) The Canonical Ensemble System of Interest and Representative Ensemble Validity of Statistical Mechanics IV. THE MAXWELL-BOLTZMANN DISTRIBUTION The Microcanonical Ensemble as Representing a System in Ec 	r the E ormation ies in th	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\$ 18. \$ 19. \$ 20. \$ 21. \$ 22. \$ 22. \$ 23. \$ 24. \$ 25. \$ 26. \$ 27. \$ 28.	 Density of Distribution in the Phase Space. Averages for semble Liouville's Theorem for the Change in Density with Time Invariance of Density and of Extension to Canonical Transfer Conditions for Statistical Equilibrium The Uniform, Microcanonical, and Canonical Ensembles (a) The Uniform Ensemble (b) The Microcanonical Ensemble (c) The Canonical Ensemble (c) The Canonical Ensemble System of Interest and Representative Ensemble Validity of Statistical Mechanics IV. THE MAXWELL-BOLTZMANN DISTRIBUTION The Microcanonical Ensemble as Representing a System in Ecospecification of Condition for a System of Many Similar M 	r the E ormation ies in th	. 43 n- . 45 . 48 52 . 55 . 56 . 56 . 57 . 58 ne . 59 . 62 . 63 m 71 . 74 . 78
\$ 18. \$ 19. \$ 20. \$ 21. \$ 22. \$ 22. \$ 23. \$ 24. \$ 25. \$ 26. \$ 27. \$ 28. \$ 29.	 Density of Distribution in the Phase Space. Averages for semble Liouville's Theorem for the Change in Density with Time Invariance of Density and of Extension to Canonical Transfer Conditions for Statistical Equilibrium The Uniform, Microcanonical, and Canonical Ensembles (a) The Uniform Ensemble (b) The Microcanonical Ensemble (c) The Canonical Ensemble (c) The Canonical Ensemble (c) The Canonical Ensemble System of Interest and Representative Ensemble Validity of Statistical Mechanics IV. THE MAXWELL-BOLTZMANN DISTRIBUTION The Microcanonical Ensemble as Representing a System in Equipation of Condition for a System of Many Similar M The Probabilities for Different Conditions of the System 	r the E ormation ies in th	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
 § 18. § 19. § 20. § 21. § 22. § 23. § 24. § 25. § 26. § 27. § 28. § 29. 	 Density of Distribution in the Phase Space. Averages for semble Liouville's Theorem for the Change in Density with Time Invariance of Density and of Extension to Canonical Transfer Conditions for Statistical Equilibrium The Uniform, Microcanonical, and Canonical Ensembles (a) The Uniform Ensemble (b) The Microcanonical Ensemble (c) The Canonical Ensemble (c) The Canonical Ensemble (c) The Canonical Ensemble System of Interest and Representative Ensemble Validity of Statistical Mechanics IV. THE MAXWELL-BOLTZMANN DISTRIBUTION The Microcanonical Ensemble as Representing a System in Ecospecification of Condition for a System of Many Similar M The Probabilities for Different Conditions of the System Condition of Maximum Probability. Maxwell-Boltzmann tion Law 	r the E ormation ies in th	. 43 n- . 45 . 48 52 . 55 . 56 . 56 . 57 . 58 no . 59 . 62 . 63 m 71 . 74 . 78 u- . 79

§ 30.	Maxwell-Boltzmann Distribution for Molecules of	More Th	an a Si	ngle	
	Kind	•		· .	82
§ 31.	Re-expression of Maxwell-Boltzmann Law in Diffe	erential I	Form		83
§ 32.	Evaluation of Constants in the Maxwell-Boltzman	n Distrik	oution I	aw	84
	(a) Value of Constant α (or C) .	•			84
	(b) Introduction of the Idea of a Perfect Gas T	hermom	eter		85
	(c) Value of Constant β	•			87
§ 33.	Useful Forms of Expression for the Distribution I	aw			88
§ 34.	Mean Values Obtained from the Distribution Law		•		90
§ 35.	The General Principle of Equipartition .	•	•		95
			8		
	V COLLISIONS AS A MECHANISM OF CITA	NICITA 337	TOTAL OF	13813	
	V. COLLISIONS AS A MECHANISM OF CHA	NGE W	IIH I	IME	
§ 36.	Introduction	•			99
§ 37.	The Principles of Dynamical Reversibility and Re	flectabil	ity		102
	(a) The Principle of Dynamical Reversibility				102
	(b) The Principle of Dynamical Reflectability		•		104
§ 38.	Molecular States	•	•		105
	(a) Specification of Molecular States Appropriate	e for the	Conside	era-	
	tion of Collisions		•		105
	(b) Classification of Molecular States .		•		106
§ 39.	Molecular Constellations	•	•		108
§ 40.	Molecular Collisions				110
§ 41.	The Closed Cycle of Corresponding Collisions	•.			114
§ 42.	The Closed Cycle of Two Members in the Case of \$	Spherical	I Molect	ules	117
§ 43.	Application of Conservation Laws to Collisions	•			120
§ 44.	Application of Liouville's Theorem to a Collision				121
§ 45.	The Probability Coefficients for Collisions .				127
§ 46.	Concluding Remarks on Molecular Collisions	•			132

VI. BOLTZMANN'S H-THEOREM

Definition of the Quantity H			134
Derivation of the <i>H</i> -theorem			136
(a) Rate of Change of H with Time .			136
(b) Effect of Collisions on Change of H with Time			137
(c) Effect of Other Processes on Change of H with Time			142
Discussion of the <i>H</i> -theorem			146
(a) Statistical Character of the H-theorem			146
(b) Observations on the Continued Decrease of H with T	lime		148
(c) H-theorem and the Principle of Dynamical Reversib	ility		152
(d) H-theorem and the Occurrence of Continued Fluctua	tions		155
H-theorem and the Condition of Equilibrium			159
(a) Maxwell-Boltzmann Distribution when H is a Minim	um		159
(b) Steady Condition when H is a Minimum .			160
(c) Detailed Balance when H is a Minimum .			161
The Generalized <i>H</i> -theorem			165
(a) Definition of the Quantity \overline{H} for an Ensemble			165
(b) Two Necessary Lemmas			168
(c) Change in \overline{H} with Time			170
(d) Relation between the Two Forms of H-theorem			174
(c) Concluding Remarks on the Generalized H-theorem			177
	Definition of the Quantity H Derivation of the H -theorem (a) Rate of Change of H with Time (b) Effect of Collisions on Change of H with Time (c) Effect of Other Processes on Change of H with Time Discussion of the H -theorem (a) Statistical Character of the H -theorem (b) Observations on the Continued Decrease of H with T (c) H -theorem and the Principle of Dynamical Reversibi (d) H -theorem and the Occurrence of Continued Fluctua H-theorem and the Condition of Equilibrium (a) Maxwell-Boltzmann Distribution when H is a Minim (b) Steady Condition when H is a Minimum (c) Detailed Balance when H is a Minimum The Generalized H -theorem (a) Definition of the Quantity \overline{H} for an Ensemble (b) Two Necessary Lemmas (c) Change in \overline{H} with Time (d) Relation between the Two Forms of H -theorem (e) Concluding Remarks on the Generalized H -theorem	Definition of the Quantity H Derivation of the H -theorem (a) Rate of Change of H with Time (b) Effect of Collisions on Change of H with Time (c) Effect of Other Processes on Change of H with Time (c) Effect of Other Processes on Change of H with Time (c) Effect of Other Processes on Change of H with Time (c) Effect of Other Processes on Change of H with Time (a) Statistical Character of the H -theorem (b) Observations on the Continued Decrease of H with Time (c) H -theorem and the Principle of Dynamical Reversibility (d) H -theorem and the Occurrence of Continued Fluctuations H-theorem and the Condition of Equilibrium (a) Maxwell-Boltzmann Distribution when H is a Minimum (b) Steady Condition when H is a Minimum (c) Detailed Balance when H is a Minimum (d) Definition of the Quantity \overline{H} for an Ensemble (b) Two Necessary Lemmas (c) Change in \overline{H} with Time (d) Relation between the Two Forms of H -theorem (e) Concluding Remarks on the Generalized H -theorem	Definition of the Quantity H Derivation of the H -theorem (a) Rate of Change of H with Time (b) Effect of Collisions on Change of H with Time (c) Effect of Other Processes on Change of H with Time (c) Effect of Other Processes on Change of H with Time (c) Effect of Other Processes on Change of H with Time (c) Effect of Other Processes on Change of H with Time (a) Statistical Character of the H -theorem (b) Observations on the Continued Decrease of H with Time (c) H -theorem and the Principle of Dynamical Reversibility (d) H -theorem and the Occurrence of Continued Fluctuations H-theorem and the Condition of Equilibrium (a) Maxwell-Boltzmann Distribution when H is a Minimum (b) Steady Condition when H is a Minimum (c) Detailed Balance when H is a Minimum (d) Definition of the Quantity \overline{H} for an Ensemble (b) Two Necessary Lemmas (c) Change in \overline{H} with Time (d) Relation between the Two Forms of H -theorem (e) Concluding Remarks on the Generalized H -theorem

CONTENTS

xii

÷

PART TWO. THE QUANTUM STATISTICAL MECHANICS

VII. THE ELEMENTS OF QUANTUM MECHANICS

A. HISTORICAL REMARKS

§ 52.	The Necessity for Modifying Classical Ideas		180
	(a) Discrete Energy Levels		181
	(b) Wave-particle Duality		182
	(c) Uncertainty, Complementarity, and Indetermination		184
	(d) The Correspondence Principle		187
	(e) Plan of Treatment		188

B. THE POSTULATES

§ 53.	The Existence of Probability Densities and Amplitudes			189
§ 54.	The Interrelation of Probability Amplitudes			193
§ 55.	The Operators Corresponding to Observable Quantities and	their U	se	
	in Calculating Expectation Values			195
	(a) Preliminary Discussion		2	195
	(b) Operator Manipulation			199
	(c) Linear Operators			201
	(d) Hermitian Operators .			201
	(e) The Operators q and p		÷	204
	(f) The Operators Corresponding to Observable Qua	ntities	in	
	General		-	206
	(g) The Calculation of Expectation Values in General	•	÷	208
§ 56.	The Schroedinger Equation for Change in State with Time			209
	(a) Postulated Form of Schroedinger Equation .			210
	(b) Some Specific Examples of the Schroedinger Equation	n		212
	(c) Transformation of Schroedinger Equation from Coor	dinate	to	
	Momentum Language	•		215
§ 57.	Summary of Postulatory Basis			217
C	THEOREMS ILLUSTRATING THE NATURE OF OUANTUM	MEGEA	NIC	G
	- LINGTHAN THE STRAING THE NATURE OF WOANTON	MECHA	MIC	6
§ 58.	Probability Density and Probability Current .	•		218
	(a) The Conservation of Total Probability .		•	218
	(b) The Concept of Probability Current			219
§ 59.	The Principle of Superposition			220
§ 60.	Energy Levels for Systems in Steady States. Eigenvalues a	nd Eige	n-	
	functions	•		222
§ 61.	Wave-particle Duality. De Broglie Waves for Free Particle	8	•	226
§ 62.	The Heisenberg Uncertainty Relation .	•	•	231
	(a) Case of a Free Particle. Wave Packets			231
	(b) General Treatment of Uncertainty Relations.			234
§ 63.	Correspondence between Classical and Quantum Mechanica	l Result	s	237
	(a) Change in Expectation Values with Time	•		237
	(b) The Analogue of the Hamiltonian Equations of Motic	m		239
	(c) The Conservation of Energy in Quantum Mechanics		•	240
	(d) The Conservation of Momentum in Quantum Mechan	ics		241
	(e) Approach of Quantum Mechanical Behaviour to the	Classie	al	

D. FURTHER DEVELOPMENT OF QUANTUM MECHANICAL METHODS. TRANSFORMATION THEORY

§ 64.	Characteristic States. Eigenvalues and Eigenfunctions in General .	246
	(a) Equation Determining a Characteristic State .	246
	(b) Eigenvalues and Eigenfunctions Corresponding to Charac-	
	teristic States	247
	(c) Properties of Eigenvalues and Eigenfunctions .	248
	(d) States Characteristic of More Than One Observable .	251
	(e) Eigenvalues and Eigenfunctions for the Coordinates and	
	Momenta	253
§ 65.	Expansions in Terms of Eigenfunctions	254
§ 66.	Expansion of the Probability Amplitude $\psi(q, t)$	257
	(a) Expansion at a Given Time of Interest	257
	(b) Expansion as a Function of the Time	259
	(c) Special Case of Expansion in Energy Eigenfunctions .	259
§ 67.	Transformation Theory	261
	(a) Probability Amplitudes in General	261
	(b) Operators in General.	263
	(c) The Schroedinger Equation in General	264
	(d) The Hermitian Matrices Corresponding to Observable Quantities	265
	(e) Unitary Transformations between Different Quantum Mechani-	
	cal Representations	268
	(f) Concluding Remarks on the General Quantum Mechanical	
	Language Provided by the Transformation Theory	271
§ 68.	The Method of Variation of Constants	273
•	(a) Derivation of the Differential Equations	273
	(b) Approximate Integration for a Special Case	276

VIII. SOME SIMPLE APPLICATIONS OF QUANTUM MECHANICS

§ 69.	Simple One-dimensional Solutions		278
	(a) Solutions in Regions of Constant Potential .		278
	(b) Approximate Solutions in Regions of Varying Potential		282
§ 70.	Particle in Free Space		285
§ 71.	Particle in a Container		287
	(a) The Energy Eigenvalues and Eigenfunctions .		287
	(b) The Number of Eigensolutions in a Given Range of Energy		290
§ 72.	Particle in a Hooke's Law Field of Force .	•	291
§ 73.	Particle in a Central Field of Force		292
	(a) Operators for the Components of Angular Momentum		293
3	(b) The Eigenfunctions and Eigenvalues Corresponding to Angul	ar	
	Momentum		294
	(c) Steady States in a Central Field of Force	•	297
§ 74.	Two Interacting Particles		299
	(a) Separation into External and Internal Equations .		300
	(b) Separation of Internal Equation in Case of Central Forces		301
	(c) Solutions of the Separate Equations		302
	(d) Indicated Nature of Applications		304
\$ 75.	Particles with Spin		306
	(a) The Spin Variables and Operators		306
	(b) Applications Involving Spin		310

	CONTENTS	xv
§ 76.	Systems of Two or More Like Particles	312
	(a) Symmetric and Antisymmetric Solutions for Pairs of Like Particles	313
	(b) Properties of the Symmetric and Antisymmetric Solutions	314
	(c) Treatment of More Than Two Like Particles .	318
	(d) Further Properties of Symmetric and Antisymmetric Solutions	
	Case of Small Interaction between Particles. Pauli Exclu-	
	sion Principle	319
	(e) Enumeration of Eigensolutions	321
12	X. STATISTICAL ENSEMBLES IN THE QUANTUM MECHANIC	S
§ 77.	Introduction of Statistical Methods in the Classical and in the	2
	Quantum Mechanics	325
§ 78.	The Density Matrix in Quantum Statistical Mechanics	327
§ 79.	Transformation of the Density Matrix from One Quantum Mechanical	
	Language to Another	330
§ 80.	Density Matrix Corresponding to a Pure State	333
§ 81.	The Analogue of Liouville's Theorem in Quantum Statistical Mechanics	335
	(a) Time Dependence of Density Matrix in Language Provided by	
	(b) Time Dependence of Depaiter Mathin in Learning Dependence of Depaiter	335
	(b) The Dependence of Density Matrix in Language Provided by	990
	(c) Time Dependence of Density Matrix in Concred Language	330
\$ 82.	Conditions for Statistical Equilibrium	330
J	(a) Density a Constant	220
	(b) Density a Function of a Constant of the Motion	340
§ 83.	The Uniform, Microcanonical, and Canonical Ensembles in the	010
-	Quantum Mechanics	342
	(a) The Uniform Ensemble	342
	(b) The Microcanonical Ensemble	345
	(c) The Canonical Ensemble	347
§ 84.	The Fundamental Hypothesis of Equal a priori Probabilities and	
	Random a priori Phases for the Quantum Mechanical States of a	
	System .	349
§ 85.	Validity of Statistical Quantum Mechanics	356
	•	
	X. THE MAXWELL-BOLTZMANN, EINSTEIN-BOSE, AND	
	FERMI-DIRAC DISTRIBUTIONS	
§ 86.	The Microcanonical Ensemble as Representing a System in Equili-	
_	brium	362
§ 87.	Specification of Condition for a System Composed of Weakly Inter-	
	acting Elements .	364
	(a) Relation of Eigensolutions for System to Eigensolutions for its	
	Component Elements	364
	(0) Method of Specifying Different Conditions	367
	(c) Number of Eigenstates Corresponding to a Specified Condition	9.00
8 88	The Prohabilities for Different Conditions of the System	308
\$ 89	Condition of Maximum Probability The Three Distribution Laws	379
0		014

§ 90.	Distribution in Systems Containing Constituent	Elemen	ts of M	lore	
	Than One Kind	•	•	•	374
§ 91.	Evaluation of Constants in the Distribution Laws	•	·	•	375
	(a) Value of Constant α	•	•	•	376
	(b) Value of Constant β	•	·	•	376
§ 92.	Maxwell-Boltzmann Systems	•	•	٠	378
	(a) Mean Energy of Oscillators of Frequency ν	•	•	•	378
	(b) Application to the Specific Heat of Solids	•	•	•	380
	(c) Application to Radiation	•	٠	٠	380
§ 93.	Einstein-Bose Systems	· •	• -	•	381
	(a) Application to Radiation	•	•	•	382
	(b) Useful Integrals in the Einstein-Bose Case	•		٠	383
	(c) Values of Parameter α , Energy E, and Press	$\operatorname{ure} p$	•	•	384
	(d) Case of Slight Degeneration .	•	•		386
§ 94.	Fermi-Dirac Systems			•	388
	(a) Useful Integrals in the Fermi-Dirac Case	•			388
	(b) Values of Parameter α , Energy E, and Press	${ m ure} \ p$	•		389
	(c) Case of Slight Degeneration			•	390
	(d) Case of Extreme Degeneration .	•	•	÷	391
	(e) Remarks on Applications to Conduction Ele	ctrons	•		392
XI.	THE CHANGE IN QUANTUM MECHANICAL S	YSTEM	AS WIT	гн т	IME
8 95.	Dynamical Reversibility in the Quantum Mechanic	s			395
\$ 96.	Integration of Schroedinger Equation for Changes	with '	Time ir	n an	
3 0 0 0	Isolated System				399
	(a) Introduction				399
	(b) Expansion of State in Terms of Unperturb	ed Ene	rgy Ei	gen.	
	states and Integration by the Method of	Variati	ion of (Con-	
	stants				400
	(c) Expansion of State in Terms of General E	igenfur	nctions	and	
	Integration as a Taylor's Series in the Tin	10			403
	(d) Change with Time Regarded as a Unitary T	ransfor	mation		405
	(e) Application to the Calculation of Probability	ties as	a Fune	tion	02 S
	of Time				407
\$ 97	Integration of Schroedinger Equation when an E	xternal	Param	eter	
3	is Varied				409
	(a) Probability Amplitudes for Energy States t	hat De	pend or	n an	
	External Parameter				409
	(b) Gradual Change in Parameter	•	•	•	412
	(c) Abrunt Change in Parameter	•	·	•	414
8 98	Observation and Specification of State in Study	ng the	Chang	e of	
3 0.01	Quantum Mechanical Systems with Time		(mong		416
	(a) Complementarity Restrictions on Observatic	• ma	•	•	416
	(a) complementarity restrictions of Observation (b) Approximate Specifications of State in the O	nontum	Macha	nice	418
	(c) Approximate Specification of Upporturbed E	noray	Figonet	atas	420
	(1) Approximate Specification of Figuretatos in	Conurs	ngense	460.05	499
	(a) Remarks on the Assignment of Revel Drob	ahilitia	ະ. ແກກ/11	Zan-	
	dom Phages	connec	o (4114	VI011 -	492
8 00	Time Propertional Transitions	•	·		494
8 00.	(4) Transition from a Digerate State to a Contin	•	Indat mu	n of	THT
	States	nuous r	Teerin	or or	495
					TAU

xvi

•

(b) Transition from the Continuous Spectrum back to the Discrete	
State	. 428
(c) Transition from One Group of Continuous States to Another	431
(d) General Formulation of Transition Probabilities .	. 434
§ 100. The Probabilities for Transition by Collision in Fermi-Dirac an	d
Einstein-Bose Gases	. 436
(a) Perturbation Matrix for the Interaction of Fermi-Dira	c
Particles	. 437
(b) Perturbation Matrix for the Interaction of Einstein-Bos	e
Particles	. 441
(c) Time-proportional Collision Probabilities	. 444
§ 101. General Treatment of Changes in Ensembles with Time	. 450

XII. THE QUANTUM MECHANICAL H-THEOREM

A. DERIVATION OF THEOREM

§ 102.	Definition of H for a Gas \ldots \ldots \ldots \ldots \ldots	453
§ 103.	Change of H with Time as a Result of Collisions	455
§ 104.	Definition of $\overline{\overline{H}}$ for a Representative Ensemble of Systems .	459
•	(a) Fine-grained and Coarse-grained Probabilities in the Quantum	
	Mechanics	459
	(b) General Expression for \overline{H}	460
	(c) Relation between \overline{H} and H .	462
§ 105.	Change of \overline{H} with Time by the Method of Transition Probabilities .	463
§ 106.	Change of \overline{H} with Time from the Exact Integration of the Schroe-	
	dinger Equation	466
	(a) The Representative Ensemble	466
	(b) Needed Results of the Exact Integration of Schroedinger's	
	Equation	467
	(c) The Klein Relation as a Necessary Lemma	468
	(d) Derivation of the Generalized H-theorem	470
	(e) Further Discussion of the Generalized H-theorem .	475
§ 107.	Application of <i>H</i> -theorem to Interacting Systems	477
	B. Relation of <i>H</i> -theorem to Behaviour at Equilibrium	
§ 108.	B. RELATION OF <i>H</i> -THEOREM TO BEHAVIOUR AT EQUILIBRIUM Relation to Previous Studies of Equilibrium	480
§ 108. § 109.	B. RELATION OF <i>H</i> -THEOREM TO BEHAVIOUR AT EQUILIBRIUM Relation to Previous Studies of Equilibrium The Long Time Behaviour of Ensembles Representing Perfectly	480
§ 108. § 109.	B. RELATION OF <i>H</i> -THEOREM TO BEHAVIOUR AT EQUILIBRIUM Relation to Previous Studies of Equilibrium The Long Time Behaviour of Ensembles Representing Perfectly Isolated Systems	480 482
§ 108. § 109. § 110.	B. RELATION OF <i>H</i> -THEOREM TO BEHAVIOUR AT EQUILIBRIUM Relation to Previous Studies of Equilibrium The Long Time Behaviour of Ensembles Representing Perfectly Isolated Systems	480 482
§ 108. § 109. § 110.	B. RELATION OF <i>H</i> -THEOREM TO BEHAVIOUR AT EQUILIBRIUM Relation to Previous Studies of Equilibrium The Long Time Behaviour of Ensembles Representing Perfectly Isolated Systems	480 482 486
§ 108. § 109. § 110. § 111.	B. RELATION OF <i>H</i> -THEOREM TO BEHAVIOUR AT EQUILIBRIUM Relation to Previous Studies of Equilibrium	480 482 486
§ 108. § 109. § 110. § 111.	B. RELATION OF <i>H</i> -THEOREM TO BEHAVIOUR AT EQUILIBRIUM Relation to Previous Studies of Equilibrium	480 482 486 488
§ 108. § 109. § 110. § 111.	 B. RELATION OF <i>H</i>-THEOREM TO BEHAVIOUR AT EQUILIBRIUM Relation to Previous Studies of Equilibrium The Long Time Behaviour of Ensembles Representing Perfectly Isolated Systems	480 482 486 488 488
§ 108. § 109. § 110. § 111.	 B. RELATION OF <i>H</i>-THEOREM TO BEHAVIOUR AT EQUILIBRIUM Relation to Previous Studies of Equilibrium	480 482 486 488 488 488 490
§ 108. § 109. § 110. § 111.	 B. RELATION OF <i>H</i>-THEOREM TO BEHAVIOUR AT EQUILIBRIUM Relation to Previous Studies of Equilibrium	480 482 486 488 488 490 494
§ 108. § 109. § 110. § 111.	 B. RELATION OF <i>H</i>-THEOREM TO BEHAVIOUR AT EQUILIBRIUM Relation to Previous Studies of Equilibrium	480 482 486 488 488 490 494
§ 108. § 109. § 110. § 111.	 B. RELATION OF <i>H</i>-THEOREM TO BEHAVIOUR AT EQUILIBRIUM Relation to Previous Studies of Equilibrium	480 482 486 488 488 490 494 498
 § 108. § 109. § 110. § 111. § 111. 	 B. RELATION OF <i>H</i>-THEOREM TO BEHAVIOUR AT EQUILIBRIUM Relation to Previous Studies of Equilibrium	480 482 486 488 488 490 494 498
 § 108. § 109. § 110. § 111. § 111. 	 B. RELATION OF <i>H</i>-THEOREM TO BEHAVIOUR AT EQUILIBRIUM Relation to Previous Studies of Equilibrium	480 482 486 488 488 490 494 498 501
 § 108. § 109. § 110. § 111. § 111. 	 B. RELATION OF <i>H</i>-THEOREM TO BEHAVIOUR AT EQUILIBRIUM Relation to Previous Studies of Equilibrium	480 482 486 488 488 490 494 498 501 501

C. SPECIFIC EXAMPLES OF EQUILIBRIUM

§ 113.	Equilibrium in Maxwell-Boltzmann Systems				506
§ 114.	Equilibrium in Einstein-Bose and Fermi-Dirac Gas	ses			509
	(a) Derivation of the Distribution Laws		-		509
	(b) Investigation of Approximation .				513
	(c) Further Discussion of the Einstein-Bose	and	Fermi-Di	rac	
	Distribution Laws				516
§ 115.	Equilibrium in General in Physical-Chemical Syste	ms			519
§ 116.	The Principle of Detailed Balance in the Quantum	Mee	chanics	•	521

PART THREE. STATISTICAL MECHANICS AND THERMODYNAMICS

XIII. STATISTICAL EXPLANATION OF THE PRINCIPLES OF THERMODYNAMICS

§ 117.	Introduction		524
	(a) Thermodynamic System and Representative Ensemble	е.	524
	(b) The Nature of Thermodynamic Variables		524
	(c) Energy, Work, and Heat		526
§ 118.	The Energy Principle for Ensembles		528
§ 119.	The Analogue of the First Law of Thermodynamics		529
§ 120.	The Canonical Ensemble as Representing Thermodynamic	Equili-	1.2.1
U	brium		530
§ 121.	Relation Connecting the Values of \overline{H} in Neighbouring Ca	nonical	
U	Ensembles	monitiour	533
§ 122.	Statistical-Mechanical Analogues of Entropy, Temperature	re and	000
0	Free Energy	io, and	535
§ 123.	Effect on \overline{H} of Leaving a System in Essential Isolation	•	540
\$ 124.	Effect on \overline{H} of Adiabatic Changes in External Coordinates	•	541
3	(a) Reversible Adiabatic Change in an External Coordina	•	549
	(b) Irreversible Adjabatic Change in an External Coordina	oto .	547
\$ 125	Effect on \overline{H} of Interaction in General	auo .	540
\$ 126.	Lemma on $\overline{H} + \overline{E}/\theta$	•	550
\$ 127	The Direction of Thermal Flow as Dependent on A	٠	550
\$ 128	Effects of Various Kinds of Thomas Process	٠	001
3 120.	(a) Effect on \overline{H} of Thermal Interaction in Conoral	•	003
	(b) Effect on $\overline{\overline{\mu}}$ of Thermal Theraction in General .		003
	(a) Thermal Familibrium of a Desult of Succession Canton	semble	553
	(d) The Limiting Cose of Berrysith Thermal Three for	cts .	554
6 190	(a) The Limiting Case of Reversible Thermal Transfer .	٠	555
§ 129.	Carnot Cycle of Processes .	•	556
§ 130.	The Analogue of the Second Law of Thermodynamics	•	558
§ 131.	Remarks on the Statistical Explanation of Thermodynamics	ι.	560

XIV. FURTHER APPLICATIONS TO THERMODYNAMICS

§ 132. Thermodynamic Quantities in Terms of the Free Energy		565
§ 133. Thermodynamic Quantities in Terms of the Sum-over-state	es .	567
§ 134. Sum-over-states as Dependent on Molecular States		568
(a) Case of Permanently Distinguishable Elements		569
(b) Case of Einstein-Bose and Fermi-Dirac Gases		570

§ 135.	Perfect Monatomi	c Gas	•		•				572
·	(a) Sum-over-st	tates		•	•				572
	(b) Thermodyn	amic Q	antities				•		573
	(c) Evaluation	of Cons	$\operatorname{tant} k$		•		•		574
§ 136.	Perfect Gases Con	aposed of	of More	Complie	ated M	folecules			574
v	(a) Sum-over-st	tates				•			574
	(b) Thermodyn	amic Qi	antities						576
	(c) Energy and	Entrop	y of Act	ual Mon	atomic	and Dia	tomic G	ases	578
§ 137.	Crystals Compose	d of a S	ingle Su	bstance					583
0	(a) The Modes	of Vibra	ation of	a Cryst	al		•		583
	(b) Application	of Qua	ntum M	echanic	з.				586
	(c) Sum-over-st	tates for	the Cry	rstal	•		•		587
	(d) Thermodyn	amic Pr	operties	of the	Crystal				589
	(e) Remarks or	the Er	tropy o	f Crysta	ls				591
\$ 138.	Mixtures of Subst	ances		,		-	•		595
9 -000	(a) Gaseous Mi	xtures					-		595
	(b) Mixed Cryst	tals		•					598
	(c) Liquid Mixt	ures	•	•	•	•	•		600
	(d) On the Defi	nition o	f the Id	eal Solu	Ition	•	•		602
\$ 120	Vapour Pressures	and Ch	emical H	lauilibr	ia.	•	*	•	604
y 155.	(a) The Therm	dim on	ic Poten	tiale of	Crysta	Is and of	f Gases	•	604
	(b) Varour Pro	CONTROL OF	f Crysta	lo	OI ySta	15 4110 0	L CHAISUS	•	606
	(a) Chamical E	anilibrio	in Cas	10	٠	•		•	600
	(c) Chemical E	yumork		od Thir	d Low	of Therr	• noduna	mice	619
8 1 40	(a) On the stat	us or un	nootod S	eu Inn	u Law	or ruen	nouyna	mes	612
§ 140.	(a) Thormodra		letiona	ystems	•	•	•	•	613
	(a) Thermouyn	Cononia		mhla	•	•	•	•	610
	(o) Completion	of Th					Machar	aionl	015
	(c) Correlation	01 10	ermoayi	lamic a	ana si	austical	-meena	ncai	600
	Quantitie	S T3			Incard (• •	I IFmaam	blog	022
	(a) Conditions	for Equ	llibrium	when C	frand (anonica	i Ensen	notes	600
	are Comb	ined			•		•	٠	023
	(e) Explanation	n of the	Gibbs F	'aradox	•	•	•	•	020
§ 141.	Fluctuations at T	hermod	ynamic 1	Equilibi	num		•	•	629
	(a) Fluctuation	s in th	e Case	of Max	well-B	oltzmani	n, Einst	tem-	
	Bose, and	Fermi	Dirac D	istribut	ions	•	•	•	630
	(b) Fluctuation	s in Tot	al Energ	3y_	•	•	٠		631
	(c) Fluctuation	s in an	Externa	1 Force	•	· ·	· •		635
	(d) Einstein's F	ormula	for Fluc	tuation	s in a N	lacrosco	pic Vari	able	636
	(e) Fluctuation	s in Cor	npositio	n	•	•	•	٠	641
	(f) Fluctuation	s in Dei	nsity of a	a Fluid		•	•		645
§ 142.	Conclusion			•			•		649
APPE	NDIX I. Symbols	for Qu	antities,	Operat	ors, an	d Matrie	ces		650
				•					0
APPE	NDIX II. Some U	setul F	ormulae	•	•	•	•	٠	099
SUBJ	ECT INDEX .			•				•	657
									661
NAME	INDEX .		•	•	•	•	•	•	001

,

xix