CONTENTS

	Foreword	ix
	Preface	xi
1	Some basic principles of thermodynamics:	
	The relations between flows and forces	1
1.1	Properties of state	1
1.2	The first and second laws of thermodynamics	3
1.3	The Gibbs free energy and the concept of "useful work"	6
1.4	The electrochemical potential	8
1.5	Conditions of equilibrium	13
1.6	Irreversible (nonequilibrium) thermodynamics	15
	The linear phenomenological equations	15
	The "dissipation" function	17
	Onsager's reciprocal relations	18
	Coupled flows, energy conversion, and useful work	19
2	Isothermal diffusion	21
2.1	The Nernst-Planck equation	21
2.2	The constant-field equation	24
2.3	Implications of the Goldman-Hodgkin-Katz (GHK)	
	flux equation	26
	Unidirectional fluxes	28
	The independence principle	29
2.4	The irreversible thermodynamic approach	30
2.5	The flux-ratio equation	31
2.6	Discontinuous diffusion	33
2.7	A few words about permeability coefficients	39
3	Diffusion potentials	42
3.1	Diffusion potential between two solutions of the same salt	42
3.2	The Goldman-Hodgkin-Katz equation	44
	Generalizations of the GHK equation	45

vi	Contents

.

3.3	A general expression for a diffusion potential	46	
3.4	The Henderson, Planck, and Schlögl equations		
3.5	The Donnan equilibrium and the Teorell-Meyer-Sievers		
	(TMS) model	54	
4	Water transport	57	
4.1	Osmosis, van't Hoff's law, and Staverman's		
	reflection coefficient	57	
4.2	Interactions between solute and solvent flows:		
	The Kedem-Katchalsky equations	60	
4.3	Physical interpretations of L_p , ω , and σ	64	
	The Renkin-Durbin model	67	
4.4	Electrokinetic phenomena	67	
4.5	Transport of solute and solvent across composite		
	membranes	73	
4.6	Summary	80	
5	Active transport	82	
5.1	A definition of active transport	82	
5.2	Experimental criteria for categorizing transport processes	84	
	Single-file diffusion	84	
	Membrane interactions	85	
	Interaction between tracer and parent species	86	
	Solvent drag	86	
	Active transport	87	
	Summary	87	
5.3	An irreversible thermodynamic model for active transport	87	
6	Carrier-mediated transport	95	
6.1	A definition of the term carrier	95	
6.2	Facilitated transfer	97	
6.3	Competitive interactions and countertransport	99	
6.4	Cotransport	103	
6.5	"Primary" active transport	106	
6.6	Rheogenic carrier-mediated transport	109	
6.7	Distinction between carriers and pores	113	
6.8	Summary	115	
7	Some principles of electrophysiology	116	
7.1	Electrical circuit analogs of flows and forces	116	
7.2	The "overall" resistance and electromotive force	122	
7.3	The "short-circuit technique"	124	

	Contents	vii
7.4	A caveat regarding electrical circuit models	129
	Notes	131
	References	137
	List of frequently used symbols	141
	Index	143