CONTENTS

Prefi	reface reface		
To the Student			
List	List of Symbols		
App	roxim	ate values for Fundamental Constants	xiv
1.	Introduction		1
	1.1	Preliminary Survey	1
	1.2	Thermal Equilibrium	9
	1.3	Thermal Equilibrium of Quantised Systems	12
	1.4	An Outline of the Following Chapters	13
PAR	TIT	HERMODYNAMICS	
2.	First	t Law of Thermodynamics	17
	2.1	Zeroth Law and Scale of Temperature	18
	2.2	Equation of State	24
		First Law of Thermodynamics	29
	2.4	The Reversible Quasi-static Process	32
	2.5	Work	32
	2.6	Specific Heat or Heat Capacity	34
	2.7	Heat Engines	36
	2.8	Conclusions Based on the First Law	39
	Exe	rcises	42
3.	Seco	ond Law of Thermodynamics	44
	3.1	An Integrating Factor for σ_{Q_R}	45
	3.2	Entropy as a Function of State	48

vi Contents

	5.5 The Calculation of Entropy Changes in Timespie	31
	3.4 Principle of Increase of Entropy	55
	3.5 The Entropy of a Perfect Gas	58
	3.6 Adiabatic Equation for a Perfect Gas	61
	3.7 The Carnot Theorems for Heat Engines	62
	3.8 History of Thermodynamics	68
	3.9 Conclusions	69
	Exercises	69
4.	Further Concepts of Thermodynamics	71
	4.1 The Fundamental Equations	71
	4.2 The Maxwell Relations	74
	4.3 Thermodynamic Equilibrium	75
	4.4 Third Law of Thermodynamics	77
	Exercises	81
	DACICISCS	0.1
5.	Further Applications of Thermodynamics	82
	5.1 Reduction of Measurements to Constant Volume	82
	5.2 The Principal Specific Heats	84
	5.3 Cooling and Liquefaction of Gases	86
	Exercises	92
Cor	nclusion to Part I	93
PAI	RT II EQUILIBRIUM STATISTICAL MECHANICS	
6.	Weakly Coupled Systems	97
	6.1 Systems of Identical Particles	99
	6.2 Weakly Coupled Systems	102
	6.3 Two Model Systems	102
	6.4 The General Weakly Coupled Localised System	
	6.5 A Gas of Weakly Coupled Particles	110
	6.6 Conclusion	112
		118
	Exercises	119
7.	Equilibrium Statistical Mechanics	121
	7.1 Ensemble Averages	122
	7.2 The Partition Function	127
	7.3 The Connection with Thermodynamics	129
	7.4 Localised Systems	133
	7.5 Classical Perfect Gas	141
	7.6 The Equipartition of Energy	147
	The Education of Suciety	~ ' '

	Contents	
	7.7 Fluctuations about Equilibrium7.8 ConclusionExercises	150 152 154
PA	RT III KINETIC THEORY	
8.	Kinetic Theory of Gases I	157
	 8.1 Distribution Functions 8.2 Mean Values 8.3 Doppler Broadening of Spectral Lines 8.4 The Passage of Molecules Across a Plane Surface 8.5 Effusion Exercises 	158 163 165 166 170 173
9.	Kinetic Theory of Gases II	
	 9.1 The Mean Free Path 9.2 Atomic Beams 9.3 The Verification of the Maxwell Velocity Distribution 9.4 Transport Properties of a Perfect Gas 9.5 The Boltzmann Transport Equation 9.6 Conclusion Exercises 	174 177 178 180 192 196
PAF	T IV APPLICATIONS OF THERMODYNAMICS AND STATE MECHANICS	ISTICAL
10.	Further Applications	. 201
	 10.1 Quantum Gases 10.2 Black-body Radiation 10.3 Heat Capacity of Solids 10.4 Phase Transitions 10.5 Negative Temperature 10.6 Magnetism Exercises 	202 215 227 242 254 259 272
11.	Conclusion	274
	Appendix I Functions of Two or More Variables Appendix II Useful Mathematics Appendix III Lagrange Undetermined Multipliers Appendix IV Density of Single-particle States	276 280 282 284

viii	Contents	
References		293
Further Reading		294
Solutions to Exercises		296
Index		315

(4)