CONTENTS

Preface			V
Chapte	er One		
SOME	INTRO	DUCTORY CONSIDERATIONS	1
	1 · 1	The nature of thermodynamics	1
	$1\cdot 2$	Concepts, models, and laws	3
	$1 \cdot 3$		4
	$1\cdot 4$	Mechanical concepts of energy	12
	$1 \cdot 5$	Continuum concepts	13
	$1 \cdot 6$	The conceptual basis of dimensional systems	15
Chapte ENERG		O THE FIRST LAW	22
	$2 \cdot 1$	Introduction	2 2
	$2 \cdot 2$	Systems	23
	$2 \cdot 3$	Energy	24
	$2 \cdot 4$		27
	$2 \cdot 5$	Energy transfer as work	3 0
	$2 \cdot 6$	Evaluation of energy transfer as work	31
	$2 \cdot 7$	Some particular work modes	36
	$2 \cdot 8$	Work for particular processes	40
	$2 \cdot 9$	Energy transfer as heat	42
	$2\cdot 10$	The first law for a control mass	4 4
	$2\cdot 11$	Examples of control-mass energy balances	4 5
	$2\cdot 12$	Energy equivalents	51
	$2 \cdot 13$	Summary of some important terms	51

viii

viii	THERMOD	YNAMICS
Chapter Thre	ee	
PROPERTIES	S AND STATE	57
$3 \cdot 1$	Concepts of property and state	5 7
$3 \cdot 2$	Equilibrium and the thermodynamic state	59
$3 \cdot 3$	Temperature	61
$3 \cdot 4$		6 5
$3 \cdot 5$	P	6 6
$3 \cdot 6$	The state postulate	67
Chapter Fou	r	
STATES OF	SIMPLE SUBSTANCES	72
$4 \cdot 1$	The simple substance	72
$4 \cdot 2$	1	7 3
$4 \cdot 3$	The general nature of a simple compressible substance	7 5
$4 \cdot 4$	Using the tabular and graphical equations of state	7 8
$4\cdot 5$	Metastable states in phase transitions	80
$4 \cdot 6$	An engineering example	80
$egin{array}{c} 4\cdot 7 \ 4\cdot 8 \end{array}$	Some other thermodynamic properties The perfect gas	8 2 8 6
$4 \cdot 9$	The simple magnetic substance	90
Chapter Five		
ENERGY ANA	ALYSIS OF THERMODYNAMIC SYSTEMS	9 4
$5 \cdot 1$	General methodology	9 4
$5\cdot 2$		96
$5 \cdot 3$		108
$5 \cdot 4$	Examples of control-volume energy analysis	112
Chapter Six		
ENTROPY A	ND THE SECOND LAW	137
$6 \cdot 1$	The essence of the second law	137
$6\cdot 2$	Allowed quantum states	139
$6 \cdot 3$	Quantum-state probabilities	141
$6 \cdot 4$	Entropy	144

149

156

6.5 Approach to equilibrium

6.6 Summary

Chapter Sev	en	
SOME CONS	SEQUENCES OF THE SECOND LAW	162
$7 \cdot 1$	Introduction	162
$7 \cdot 2$		163
$7 \cdot 3$		164
$7 \cdot 4$	1	168
$7 \cdot 5$	Intensive representations and some extensions	171
$7 \cdot 6$	Macroscopic evaluation of entropy	173
$7 \cdot 7$		175
$7 \cdot 8$		178
$7 \cdot 9$	Two idealized systems	180
$7 \cdot 10$	Entropy change and production for a control mass	184
	Examples of control-mass second-law analysis	187
	Equivalence of the mechanical and thermodynamic pressures	188
7.13	Equivalence of the thermodynamic and empirical	100
. 20	temperatures	190
7 · 14	Applications of the second law to energy-conversion	
	systems	191
$7 \cdot 15$	A remark on the thermodynamic temperature	197
	The second law for a control volume	197
	Examples of second-law analysis	199
	A summary of the first and second laws	204
Chapter Eigh	ıt	
THE THERM	ODYNAMICS OF STATE	210
$8 \cdot 1$	Introduction	210
$8 \cdot 2$	The Gibbs equation	210
$8 \cdot 3$	Equation of state for the perfect gas	212
$8 \cdot 4$	Other P - v - T equations for gases	220
$8 \cdot 5$	Algebraic equation of state for an incompressible liquid	224
$8 \cdot 6$	Differential equations of state	228
$8 \cdot 7$	Some important property relations	231
8.8	Thermodynamics of the simple magnetic substance	239
8.9	Algebraic equation of state for the Curie substance	241
Chapter Nine	•	
CHARACTER	ISTICS OF SOME THERMODYNAMIC SYSTEMS	247
$9 \cdot 1$	Analysis of thermodynamic systems	247
$9 \cdot 2$	The Carnot cycle	249
$9 \cdot 3$	Pattern processes	25

X THERMODYNAMICS

$9 \cdot 4$	A particular vapor power system	255
$9 \cdot 5$	Modern utilization of the Rankine cycle	260
$9 \cdot 6$	20 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	266
$9 \cdot 7$	Some thoughts on the working fluid	271
$9 \cdot 8$		272
$9 \cdot 9$	Vapor refrigeration systems	273
9 · 10	Some problems and advantages of all-gas cycles	279
$9 \cdot 11$	A particular gas-turbine power system	280
	Some remarks on the steady-flow compression process	283
$9 \cdot 13$	The Brayton cycle and its modifications	285
$9 \cdot 14$	Other gas power cycles	291
$9 \cdot 15$	Air-cycle refrigerator	297
$9 \cdot 16$	A simple thrusting system	299
$9 \cdot 17$	Other thrusting systems	303
$9 \cdot 18$	Direct energy-conversion systems	307
$9 \cdot 19$	Concluding remarks	314
Chapter Ten		
THERMODY	IAMICS OF NONREACTING MIXTURES	328
10 · 1	Descriptions of mixtures	3 2 8
$10 \cdot 2$	Mixtures of independent substances	330
$10 \cdot 3$	Mixtures of perfect gases	3 3 3
$10 \cdot 4$	Application to air-water-vapor mixtures	337
$10 \cdot 5$	Air conditioning	3 4 5
Chapter Elev	en	
THERMODY	IAMICS OF REACTING MIXTURES	3 5 5
$11 \cdot 1$	Some chemical concepts and terms	355
$11 \cdot 2$	Fuel analysis and product composition	3 5 7
$11 \cdot 3$	Standardized energy and enthalpy	3 5 9
$11 \cdot 4$	Heats of reaction, heating values	361
$11 \cdot 5$	Some illustrative calculations	363
$11 \cdot 6$	Absolute entropy and the third law of thermodynamics	369
$11 \cdot 7$	A second-law application	371
Chapter Twe	lve	
EQUILIBRIU	M	377
$12 \cdot 1$	The general approach	377
$12 \cdot 2$	Equilibrium	378

		Contents	, VI
	$12 \cdot 3$	Evaluation of the electrochemical potential	380
	$12 \cdot 4$	Electrochemical potentials in a mixture of perfect gases	383
	$12 \cdot 5$	The Gibbs phase rule	385
	$12 \cdot 6$	Alteration of the saturated-vapor pressure by an inert gas	388
	$12 \cdot 7$	General conditions for chemical equilibrium of a mixture	390
	$12 \cdot 8$	Degrees of reaction freedom: The simple reactive mixture	393
	$12 \cdot 9$	Equations of reaction equilibrium	394
		Reactions in perfect-gas mixtures	395
		Calculation examples	397
		Van't Hoff equation	400
		Application to the fuel cell	401
	$12 \cdot 14$	Current methods and applications of the thermodynamic	
		theory of combustion	403
Chap	ter Thirt	een	
AN II	NTRODU	CTION TO COMPRESSIBLE FLOW	407
	$13 \cdot 1$	The momentum principle	407
	$13 \cdot 2$	Some momentum-principle applications	412
	$13 \cdot 3$	Stagnation properties in compressible flow	413
	$13 \cdot 4$	Mach number, speed of sound, regimes in compressible	
		flow	414
	$13 \cdot 5$	A nozzle design problem	418
	$13 \cdot 6$	One-dimensional steady isentropic flow	420
	$13 \cdot 7$	Choking in isentropic flow	425
	13.8	Isentropic flow in convergent-divergent passages	426
	13.9	Shock waves	428
	13.10	Compressibility effects in flows with friction and heat	
	10 11	transfer	434
	13.11	Examples of compressible flow calculations	435
Ob			
Спарт	ter Four	een een	
AN IN	ITRODU	CTION TO HEAT TRANSFER	449
	14 · 1	Some basic concepts	449
	$14 \cdot 2$	The conduction rate equation	451
	$14 \cdot 3$	Some simple conduction problems	453
	${\bf 14\cdot 4}$	Convection	465
	$14 \cdot 5$	Convection calculation examples	468

χii		THERMODYNAMICS
$14 \cdot 6$	Fins	474
${\bf 14\cdot 7}$	Heat exchangers	478
$14 \cdot 8$	Radiation	483
$14 \cdot 9$	Summary	486
Appendix A		
		495
Appendix B		
THERMODY	NAMIC PROPERTIES OF SUBSTANCES	. 505
Appendix C		
INFORMATIO	ON FOR HEAT TRANSFER ANALYSIS	555
NOMENCLAT	TURE	569
ANSWERS T	O SELECTED PROBLEMS	575
Index		579