CONTENTS

THERMODYNAMIC THEORY OF STABILITY	1
J. Casas-Vázquez	
Introduction	1
The Gibbs Theory of Stability	1
Stability in Irreversible Thermodynamics	18
Stability in Generalized (Extended) Thermodynamics	32
MATHEMATICAL METHODS IN STABILITY THEORY	41
G. Lebon	
Introduction	41
Definition of Stability in the Sense of Lyapounov	42
The Linearized Theory	45
The Energy Methods	53
Lyapounov's Theory	60
Iterative Methods in Nonlinear Hydrodynamics	66
Bifurcation Theory	73
Variational Methods	83
SOME PHYSICAL MECHANISMS OF HYDRODYNAMICAL INSTABILITIES	94
C. Pérez-García	
Introduction	. 94
Hydrodynamic Instabilities. Linear Theory	95
Stability Beyond the Linear Transition Threshold	117
Final Comments	133
HYDRODYNAMIC FLUCTUATIONS NEAR THE RAYLEIGH-BENARD INSTABILITY	138
D. Jou	
Introduction	138
Hydrodynamic Critical Exponents in the Linear Theory	141
A Nonequilibrium Thermodynamic Potential for Stationary States	147
The Influence of the Nonlinear Terms on the Critical Behaviour	150
Other Nonclassical Aspects of the Hydrodynamical Fluctuations	
in the Rayleigh-Benard Instability	154
Concluding Remarks	156

SOME TOPICS ABOUT THE TRANSITION TO TURBULENCE	160
P. Bergé	
Unsteady Regimes and Turbulence	160
Short Description of the Behaviour of Rayleigh-Benard Instability	
(High Prandtl Number Case)	163
More About a Route to Turbulence, Strange Attractor	170
EXPERIMENTAL ASPECTS OF THE TRANSITION TO TURBULENCE	
IN RAYLEIGH-BENARD CONVECTION	177
M. Dubois	
Experimental Conditions	177
Spatial Order	179
Time-Dependent Properties	180
Phase Space Diagrams	183
HEAT FLUX IN CONVECTIVE INSTABILITIES	192
M. Zamora	
Introduction	192
Convective Instabilities	193
Heat Flux in the Benard-Rayleigh Problem	196
Experimental Results	203
Conclusions	207
UNSTABLE FLOWS OF CONCENTRATED SUSPENSIONS	210
D. Quemada	
Introduction	210
Rheology of Concentrated Disperse Systems	212
Shear Viscosity at Very High Concentration	221
Flow of Suspensions Through Narrow Slits and Pipes.	
Flow Instabilities	230
Some Remarks as a Conclusion	243
DISSIPATIVE STRUCTURES AND OSCILLATIONS IN REACTION-DIFFUSION	
MODELS WITH OR WITHOUT TIME-DELAY	248
M.G. Velarde	
General Introduction	248
Example of Limit Cycle in Bacterial Cultures	249
Example of Limit Cycle in Semiconductor Physics	254

Example of Space Distribution and Multiple Steady States	263
Example of Limit Cycle in Systems with Time Delay,	
Diffusion and Advection	270
FLUCTUATIONS IN ELECTROMAGNETIC SYSTEMS	279
J.M. Rubi	2/9
Introduction	279
Fluctuations Around Stationary States of One-Dimensional	
Conductors	279
Electromagnetic Fluctuations in Fluids	287
INSTABILITIES IN ECOLOGY	295
R. Margalef	
Asymmetries in History and the "Laws" of Succession and Evolution	295
Organization as the Result of the Segregation of	
Potential Reactants	299
Differences Between Vertical and Horizontal Axes	303
Summary	305
STRANGE ATTRACTORS	307
C. Perelló	
Introduction	307
Basic Concepts	308
Examples of Systems with Strange Attractors	313
Possibility of Finite Dimensional Strange Attractors in Infinite	

Dimensional Systems and Its Possible Relation to Turbulence 317