CONTENTS

SOME SI THEORY	MPLE REMARKS ON THE BASIS OF TRANSPORT	SIR	R.	PEIERLS
I.	Introduction			2
II.	The most naive transport problem			2
III.	Angle dependent scattering; many collision tim	ies		8
IV.	A still more general transport collision time			10
v.	How valid is the Boltzmann equation?			12
VI.	The situation is better than it seems			14
VII.	There are still reservations			17
VIII.	Pauli's remark and off-diagonal elements			18
IX.	Summary of limits of validity			20
X.	Extension to many-body problem			20
XI.	Neglect of correlations			21
XII.	Conservation laws			22
XIII.	Limit on collision rate			23
XIV.	Omission of off-diagonal terms. Rigorous deriv	ratj	ons	s 24
XV.	Illustrations. Lattice thermal conductivity			26
XVI.	Content of Boltzmann equation			27
XVII.	Exponential Behaviour			29
XVIII.	The use of modern methods			30
XIX.	Conclusions			32
	References		a	33
ENTROPY,	DYNAMICS AND SCATTERING THEORY	I. F.	PI M/	RIGOGINE AYNE
I.	Introduction			35
II.	The Mac Kean model			36
III.	Irreversibility as a symmetry breaking			41
IV.	Star unitary transformation			45
V.	Construction of the Λ - transformation			49
VI.	Potential scattering			57
VII.	Concluding remarks			71
	References			73

RESPONSE, RELAXATION AND FLUCTUATION

I.	Introduction	75
II.	Classical Brownian motion and its generalizations	76
III.	Rice's method (harmonic analysis)	79
IV.	Direct integration, path integral representation	80
v.	Stochastic Liouville equation	85
VI.	Retarded friction, fluctuation-dissipation theorems	87
VII.	Force correlations	93
VIII.	Some examples	97
IX.	Some comments	105
X.	Damping-theoretical method	113
XI.	Concluding remarks	119
	Notes and references	122
FLUCTUAI SUSCEPTI	ING HYDRODYNAMICS AND RENORMALIZATION OF BILITIES AND TRANSPORT COEFFICIENTS	P. MAZUR
I.	General introduction	126
II.	On the critical behaviour of the dielectric constan for a non-polar fluid	t 130
III.	Renormalization of the diffusion coefficient in a fluctuating fluid	144
	References	154
IRREVERS	IBILITY OF THE TRANSPORT EQUATIONS	J. BIEL
I.	Introduction	156
II.	General remarks on irreversibility	158
III.	The irreversibility of the Boltzmann transport equation	171
IV.	The irreversibility of other equations	191
	References	201
ERGODIC	THEORY AND STATISTICAL MECHANICS J. L.	LEBOWITZ
I.	Introduction	203
II.	Ergodicity and ensemble densities	207
III.	Systems of oscillators and the Kam theorem	213
IV.	Mixing	216
v.	K- and Bernoulli systems	223
VI.	Ergodic properties and spectrum of the induced unitary transformation	230
VII.	Infinite sy stems	231
	References	234

CORRELAT	ION FUNCTIONS IN HEISENBERG MAGNETS M	D	E]	LEENER
· I.	Introduction			238
II.	Neutron scattering experiments and spin correlation functions			243
III.	Some general properties of the spin correlation functions			248
IV.	Low temperature theory			251
V.	High temperature theory			261
VI.	The critical region			274
	References			287
ON THE ETTHE TRANS	NSKOG HARD-SPHERE KINETIC EQUATION AND M. SPORT PHENOMENA OF DENSE SIMPLE GASES	G.	VI	ELARDE
I.	Introduction: The hard-sphere model interaction			289
II.	From the Boltzmann approach to the Enskog equation	on		294
III.	Hydrodynamic equations and the (new Enskog) collisional (or potential) transfer	i-		300
IV.	Solution of the Enskog equation for practical purposes			305
V.	Transport coefficients from the Enskog equation			310
VI.	Comparison with experimental data			316
VII.	The square-well fluid			327
VIII.	Final comments			330
	References			336
WHAT CAN	ONE LEARN FROM LORENTZ MODELS?	Ξ.	H.	HAUGE
I.	Models			338
II.	From kinetic theory to hydrodynamics			340
III.	Higher density effects			349
IV.	Rigorous results			362
	References			366
CONDUCTI	VITY IN A MAGNETIC FIELD R. B. S	STI	NCI	ICOMBE
I.	Introduction			369
II.	Derivation of the Boltzmann equation in a magnetic field			376
III.	Solution of the Boltzmann equation			387
IV.	Quantum effects			395
V.	Collisions between carriers			401
VI.	Collisions with phonons			405
VII.	Concluding remarks			411
	References			412

TRANSPORT PROPERTIES IN GASES IN THE PRESENCE OF J. BEENAKKER EXTERNAL FIELDS

I.	Introduction	414
II.	The non-equilibrium polarizations	426
III.	The limitation of the one moment description	4 41
IV.	The effective cross sections and their behaviour	449
۷.	Field effects in the rarefied gas regime	456
	References	466
TRANSPORT	F PROPERTIES OF DILUTE GASES WITH R. F. SN STRUCTURE	IDER
I.	Introduction	470
II.	The role of free molecular motion	472
III.	Field dependence of the viscosity	479
IV.	On the Boltzmann equation for molecules with internal structure	496
V.	Collision integrals of the linearized W-S equation	505
	References	516

х