Contents	xxxi
3.4. The mass renormalization3.5. The wave function renormalization3.6. The complete renormalization scheme	522 526 526
 4. The bounds and the results 4.1. Estimates on strongly connected sets 4.2. Estimates on graphs 4.3. Statement of the results 	527 527 533 536
Note added in proof	537
References	537
PART II	
Course 6. Quasi-integrable mechanical systems, by G. Gallavotti	539
1. Basic definitions on integrability and canonical integrability. Examples	542
2. Canonical integrability and the Arnold-Liouville theorem	556
3. Classical perturbation theory	564
4. Birkhoff theorems on harmonic oscillators	572
5. Some applications of perturbation theory. The precession of Mercury. Poincaré's triviality theorems	576
6. Phase space diffusion: Bounds on the time scales of Arnold's diffusion. Nekhorossev theorem	583
7. Resonances and chaos	591
8. Existence of nonresonant invariant tori and quasi-periodic motions. The Kolmogorov-Arnold-Moser theorem	604
9. Concluding remarks	621
References	623
Course 7. Stochastic differential equations—Large deviations, by S.R.S. Varadhan	625
0. Introduction	628
1. Discrete-time martingales	628
2. Continuous-time martingales	633
3. Itô processes	635
4. Stochastic integrals	637

xxxii Contents

5. Ito s formula	641
6. Stochastic differential equations	644
7. Cameron-Martin-Girsanov formula	646
8. Partial differential equations and diffusion	648
9. Large deviations	649
10. Exit problems	651
11. The sausage problem	657
12. The polaron problem	673
13. Large deviations for empirical processes	676
References	678
References	078
Course 8. Introduction to disordered systems, by D.J. Thouless	681
1. Introduction	684
2. Electron densities of states	684
2.1. Green functions and resolvents	685
2.2. Coherent potential approximation and related methods	686
2.3. Band tails and instantons	689
2.4. One-dimensional white noise problem	692
2.5. Exact results for the density of states	693
3. Electron localization	694
3.1. The Anderson model	695
3.2. Weak localization in one dimension	697 698
3.3. Scaling theory of localization 3.4. The nonlinear sigma model	702
3.5. Self-consistent theories	703
4. Interactions of electrons	705
4.1. Variable range hopping	706
4.2. Inelastic scattering	707
4.3. The Coulomb gap	708
4.4. Coulomb interactions between diffusing electrons4.5. Magnetoresistance and the quantum Hall effect	708 709
5. Disordered magnetic systems	712
5.1. Dilute magnetic systems	712
5.2. Percolation	714
5.3. Spin glass	715
5.4. Random fields	718
References	719

C	
Contents	XXXIII

Course 9. Mathematical aspects of the physics of disordered	
systems, by J. Fröhlich; lecture 5 in collaboration	
with A. Bovier and U. Glaus	725
	_
1. General introduction to the problems	728
1.1. Some general comments	728
1.2. Topics in disordered systems theory	729
1.3. Assorted remarks, acknowledgements	750
2. The "high-temperature" behavious of disordered magnets	752
2.1. Definition of models and main results	752
2.2. Griffiths' theorem on Griffiths singularities	758
2.3. A convergent resummation of the "high-temperature" expansion	766
2.4. Ruelle-Araki and Mermin-Wagner-type theorems for one- and two-	
dimensional spin glasses	771
2.5. Critical phenomena in disordered magnets	776
3. Ordering in disordered magnets at low temperatures	778
3.1. Low-temperature behaviour of predominantly ferromagnetic magnets	778
3.2. Bond percolation in dimension $\nu \ge 2$	782
3.3. Dilute ferromagnets	795
3.4. Adding antiferromagnetic couplings	802
3.5. Spin glasses at low temperatures	808
4. The random field Ising model (RFIM)	821
4.1. The RFIM, main results	821
4.2. "Real" magnetic systems which can be mapped onto an RFIM	824
4.3. On the lower critical dimension of the RFIM	827
4.4. Interface fluctuations in the RFIM	840
4.5. The random field spherical model	847
5. Branched polymers and dimensional reduction, with A. Bovier and	
U. Glaus	850
5.1. Introduction	850
5.2. Mean field theory	855
5.3. Intersection probability of two trees	860
5.4. Mean field bounds for critical exponents and related results	865
5.5. Flory theory for the exponent ν	871
5.6. The Parisi-Sourlas dimensional reduction	872
5.7. Monte Carlo calculation of the critical exponents for the self-avoiding	
branched polymers in two dimensions	881
Note added in proof	886
References	887

xxxiv Contents

tial—A mathematical review, by T.C. Spencer	895
1. Introduction	898
2. One dimension—transfer matrix formalism	904
3. Density of states	911
4. Perturbation theory	918
5. Main technical estimate and absence of absolutely continuous spectrum	920
6. Deterministic estimates on G	923
7. Probabilistic estimates	930
8. Pure point spectrum	935
References	941
Seminars related to Courses 6-10 Seminar 8. Canonical perturbation theory for Anosov diffeomorphisms, by R. de la Llave, J.M. Marco and R. Moriyon	945
Seminar 9. Invariant manifolds of complex analytic mappings near fixed points, by J. Pöschel	949
1. Statement of the result	950
2. Historical notes	952
3. Comparison with the KAM method	953
4. An example	956
5. Proof of the theorem	957
References	963
Seminar 10. Stochastic processes on fibre bundles, by C. DeWitt-Morette	965
Seminar 11. The local Atiyah-Singer index theorem, by E. Getzler	967

Contents	xxxv

Seminar 12.	Anderson transition and nonlinear σ -model, by F . Wegner	975
Seminar 13.	Density of states in lowest Landau level and super- symmetry, by F. Wegner	977
Seminar 14	The classification of critical exponents in two dimensions; The supersymmetric Kosterlitz-Thouless phase transition, by M. Doria	979
Seminar 15.	Instability of tunneling and the concept of molecular structure in quantum mechanics: The case of pyramidal molecules and the enantiomer problem, by P. Claverie and G. Jona-Lasinio	981
Seminar 16.	Translation symmetry breaking in Z_N lattice gauge theories as a random surface problem—A brief summary, by C. Borgs	983
Seminar 17.	Random surface representation of $U(\infty)$ lattice gauge theory, by I.K. Kostov	987
Seminar 18.	Pure and random models of statistical mechanics on hierarchical lattices, by B. Derrida	989
1. Introduction		989
2. Hierarchical	lattices	991
3. Zeros of the	partition function	994
4. Disorder on	hierarchical lattices	996
5. The Harris of	criterion	997
6. The small- α	expansion	998
References		999

xxxvi Contents

Seminar 19. Percolation and random and L. Chayes	media, by J.T. Chayes 100.
 Introduction 1.1. Bond percolation on Z^d. Mathemat applications 1.2. Related systems 	1002 ical definitions and physical 1002 1007
 Percolation. General considerations and ana 2.1. The Harris theorem Rescaling in percolation Decay of correlations and the critical po 2.4. The Kesten theorem 	101 ₄
3. Percolation in $d \ge 3$. A multitude of phases	1039
4. First-passage problems on \mathbb{Z}^d	1049
 5. Self-avoiding random walks and random sel 5.1. General properties 5.2. Entropy for SAWs 5.3. Equivalence of the masses 5.4. Distribution of endpoints 5.5. Random self-avoiding walks Appendix A5. Analyticity properties of the 	105 106 106 107 107
6. Random resistors and flow networks6.1. The critical point for bulk transport6.2. Critical properties of bulk flow	108 108- 108'
7. Invasion percolation7.1. Invasion without trapping7.2. Invasion with trapping	1090 1094 1110
8. Random surface models8.1. Surface tension in simple models8.2. Random tubes	1116 1118 112
References	1138
Seminar 20. Study of a spin glass mod	del, by A. Martin 1143
Seminar 21. Some results on spin-gla van Enter	ass models, by A.C.D.
1. Introduction	1145
2. Random site models	1146
3. Effective decrease of interactions in long-rang	ge random bond models 1149
References	1153

Contents	xxxvii

Seminar 22.	Equilibrium and nonequilibrium theory of a geometric long-range spin glass, by T. Eisele	1155
1. Introduction		1156
2. The lattice r	nodel	1157
3. Equilibrium	theory	1158
4. Equilibrium	fluctuation fields	1160
5. Nonequilibri	um theory: the dynamics of the mean magnetization	1161
6. The fluctuat	ion process	1163
7. The critical	fluctuation processes	1164
References		1165
Seminar 23.	Replica symmetry breaking in Ising and quadru- polar glasses, by P. Goldbart	1167
Seminar 24.	The Ising model in a random field: long-range order in three dimensions, by J.Z. Imbrie	1171
1. Introduction		1172
2. An expansio	n for the ground state energy	1175
3. Setting up th	ne induction	1180
4. The proof of	f long-range order	1183
References		1186
Seminar 25.	Level repulsion in chaotic time-dependent systems, by M. Feingold	1187
Seminar 26.	The density of states of random Schrödinger operators, by R. Maier	1189
1. Introduction		1189
2. The density	of states and its integral representation	1190
3. Results and	sketches of proofs	1192
References		1195
	A quantum particle in a hierarchical potential: A first step towards the analysis of complex quantum systems, by F. Martinelli	1197