Contents

Preface to the First Edition	•					•				•	v
Preface to the Second Edition			•						•		vii
Preface to the Third Edition			•	•	•	÷	÷			•	ix

CHAPTER I

Conservation of Energy in Closed and Open Systems-

1.	Isolated, Closed, and Open Systems				÷	3
2.	Extensive and Intensive Properties					3
3.	Conservation of Mass in Closed Systems					4
4.	Conservation of Mass in Open Systems	÷	ŀ			6

CHAPTER II

Conservation of Energy in Closed and Open Systems-The First Principle of Thermodynamics

1.	Functions of S	Sta	te						•			•				÷	•	•
2.	Conservation	of	1	En	erg	gy-	-(Гh	e	F	irs	t	P	rin	ici	ple	2	of
	Thermodyna	am	ics					•				•	•	•				
3.	Enthalpy .										÷		•				•	
4.	Open Systems								÷									•
5.	Examples .																•	

CHAPTER III

Entropy Production-The Second Principle of Thermodynamics

1.	Reversible and Irreversible Processes	14
2.	Entropy	15
	Entropy of One-Component Systems-Absolute Tem-	
	perature	18
4.	Entropy Production Due to Heat Flow	19
	Entropy of Multicomponent Systems-Chemical Po-	
	tentials	21

Thermodynamics of Irreversible Processes

6.	Entropy Production Due to Chemical Reactions-	
	Affinity—Coupling of Chemical Reactions	23
7.	Chemical Affinity	25
8.	Entropy Production and Entropy Flow in Open Sys-	
	tems	28
9.	Entropy Production Due to Electrochemical Reac-	
	tions	29
10.	Entropy Production in Continuous Systems	32
11.	Internal Degrees of Freedom	36

CHAPTER IV

General Statements Concerning Entropy Production and Rates of Irreversible Processes

1.	Transformation Properties of Rates and Affinities—
	Equivalent Systems
2.	Rates and Affinities
	Fluctuation Theory
4.	Microscopic Reversibility and Onsager's Reciprocity
	Relations.
5.	Symmetry Requirements on Coupling of Irreversible
	Processes.

CHAPTER V

The Phenomenological Laws—Interference of Irreversible Processes

1.	Domain of Validity of Phenomenological Laws-	
	Chemical Reactions Near Equilibrium	55
	Electrokinetic Effects-Saxen's Relation	61
3.	Thermomolecular Pressure Difference and Thermo-	
	mechanical Effect	65
4.	Kinetic Interpretation of Heat of Transfer-Knudsen	
	Gas	68
	Diffusion—Einstein's Relation	71
6.	Continuous and Discontinuous Formalism	73

xiv

Contents

CHAPTER VI

The Stationary Non-Equilibrium States

1.	Thermodynamic Significance of Stationary Non-	
	Equilibrium States	5
2.	States of Minimum Entropy Production 7	6
3.	Consecutive Chemical Reactions	7
4.	More Complicated Systems of Chemical Reactions . 8	80
5.	Time Variation of Entropy Production-Stability of	
	Stationary States	1
6.	Entropy Flow in Stationary States	3
7.	Time Variation of the Entropy	35
8.	Stationary State Coupling of Irreversible Processes . 8	37
9.	Applications in Biology)1

CHAPTER VII

Non-linear Thermodynamics of Irreversible Processes

1.	Introduction			93
2.	Variation of the Entropy Production		•	95
3.	Steady States and Entropy Production .			99
4.	Evolution Criterion and Velocity Potential			106
	Rotation around Stationary States			
6.	Local Potentials and Fluctuations			112

CHAPTER VIII

Order and Dissipations

1.	Introd	luct	ion			•	•					•		•		117
2.	Chem	ical	Os	cilla	atio	ns	•		÷					•		120
	Dissip															
4.	Symm	etry	7 Bi	eal	king	Ins	tab	iliti	es-	-Th	еT	urir	ıg N	feci	h-	
																127
5.	Gener	al C	`om	me	nts		•		•						٠	132
Refe	erences	••		•				·	•		i •,	•	•		•	135
List	of Sym	bol	S.		•		•		•	٠			•			141
Inde	×		÷		÷	•	÷		•			*		×	÷	145