CONTENTS

[for the meaning of square brackets, see p. xi]

	Preface	vii
	Introductory remarks, which are rather important	ix
1	The harmonic oscillator	1
	Determining the vibration frequency	3
	Lossy vibrators	5
	Driven harmonic oscillator	8
2	Generalized linear systems and stability criteria	11
	Negative dissipation	11
	Saddle-point instability	14
	The phase plane; stability criteria	18
	Linear systems of higher order; Routh-Hurwitz and Nyquist	25
	A model of delayed feedback	30
	Further comments on delayed feedback	34
	[Political implications]	36
3	Response of linear systems	39
	Impulse response function	41
	Examples of impulse response	42
	Applications of the impulse response function	. 44
	Compliance, susceptibility, etc.	48
	The step-function response	50
	Relaxation processes	52
	Comparison with experimental results for typical relaxation	
	processes	57
	The approach to equilibrium	64
	Extended systems	67
4	Periodically driven non-linear systems	72
	Limit cycles, metastability and hysteresis	72
	Mode jumping	77
	Highly non-linear systems; introduction to the Poincaré map	86
	Stability rules for discrete sampling	89
	Application of stability test to the impact oscillator	94
	Behaviour outside the range of stability; subharmonics	98
	Bifurcation and chaos in one variable	100
	Further properties of the one-variable map	108

vi Contents

	Successive approximation to the solution of equations	113
	Two-variable mapping and bifurcations	114
	Examples of bifurcation and chaos	119
	[The prevalence of chaos]	127
5	Elementary types of catastrophe	129
	Classification	132
	Limit point instabilities	134
	Stable symmetric transitions	141
	Rayleigh's principle	148
	Unstable symmetric transitions	149
	Influence of imperfections on critical behaviour; the cusp	
	catastrophe	155
	Bistable systems	158
	The cusp catastrophe (continued)	161
	van der Waals' equation	162
	The cusp catastrophe (for the last time)	166
	[Other types of catastrophe]	169
6	Phase transitions	171
	The liquid-vapour critical point	171
	Lambda-point anomalies in the thermal capacity	177
	Second-order transitions	182
	Landau theory	186
	Weiss theory of ferromagnetism	188
	Ginsbury-Landau theory of fluctuations	190
	Domains	195
	Critical slowing-down	198
7	Broken symmetry	203
	Symmetry changes at a critical point	203
	Intrinsic broken symmetry	205
	Broken symmetry in quantum mechanics	209
	Reconciliation of quantum and classical physics	213
	[Limitations of science]	216
	References	220
	Index	226