Contents

chapter I	LINEAR SYSTEM THEORY	- 1
	1.1 The Statistical Point of View1.2 The Superposition Integral1.3 Constant and Time-Varying Systems1.4 Stability Conditions	1 2 5 8
chapter 2	STATISTICS OF RANDOM VARIABLES	П
	 2.1 Probability Theory 2.2 Discrete and Continuous Random Variables 2.3 Transformations of a Random Variable 2.4 Elements of Statistical Measure 2.5 Two-Dimensional Random Variables 	11 14 19 20 23
chapter 3	RESPONSE TO DISTRIBUTED INPUTS	31
	 3.1 Constant Random Signals 3.2 Random Time Functions 3.3 Ensemble Correlation Functions 3.4 Time Correlation and Spectral Density 3.5 Noise Considerations 3.6 The Signal-Noise Balance 	31 33 34 38 42 48
chapter 4	SYSTEMS ANALYSIS AND DESIGN	51
	4.1 The General Approach4.2 The Adjoint Method of Analysis4.3 Perturbation Techniques4.4 Homing Missile System Design	51 52 55 61

ix

×	CONTENTS

chapter 5	OPTIMUM SYSTEMS	71
	5.1 Introduction	71
	5.2 Error Criteria	73
	5.3 Minimum Instantaneous Mean-Squared Error	73
	5.4 Determination of the Optimum Impulse Response	78
	5.5 The Optimum System Block Diagram	84
chapter 6	APPLICATIONS IN OPTIMAL SYNTHESIS	88
	6.1 Fire Control	88
	6.2 Tracking and Prediction	95
	6.3 Guidance and Navigation	102
chapter 7	OPTIMIZATION WITH MULTIPLE INPUTS	
chapter 7	AND OUTPUTS	110
	7.1 General Approach	110
	7.2 Redundant Signal Processing	112
	7.3 Selective Processing	118
	7.4 Independent Processing	122
chapter 8	OPTIMIZING INPUTS FOR SPECIFIED	
chapter 0	LINEAR SYSTEMS	126
	8.1 General Considerations	126
	8.2 First-Order Systems with Minimum Error	128
	8.3 Multi-Dimensionality and High-Order Systems	134
	8.4 Statistical Considerations	141
chapter 9	MULTI-DIMENSIONAL, NONLINEAR, BOUNDARY-	
Chapter 9	VALUED VARIATIONAL PROBLEMS	146
	9.1 Introduction	146
	9.2 Difficulties in the Classical Approach	148
	9.3 Utility of the Dynamic Programming Approach	152
	9.4 General Method for Numerical Solution	158
	9.5 Additional Considerations	163
	9.6 Stochastic Problems	168
16	L CENEDAL CTABILITY CONCIDED ATIONIC	ידו
appendix	I GENERAL STABILITY CONSIDERATIONS	171

CONTENTS		, xi
appendix II	MINIMUM MEAN-SQUARED ERROR FOR LINEAR SYSTEMS WITH MULTIPLE INPUTS AND OUTPUTS	175
appendix III	PARAMETRIC EXPANSION FOR MINIMUM WEIGHTED SQUARED ERROR	177
appendix IV	THE VARIATIONAL PROBLEM OF MAYER	180
references		185
index		189