CONTENTS

1 Totace XI	
Preface to Statistical Thermodynamics xiii	
Chapter 1 INTRODUCTION AND REVIEW 1	
1-1 Introduction 1 1-2 Classical Mechanics 3 1-3 Quantum Mechanics 8 1-4 Thermodynamics 13 1-5 Mathematics 20	
Chapter 2 THE CANONICAL ENSEMBLE 35	
2-1 Ensemble Averages 35	
2-2 Method of the Most Probable Distribution 37	
2-3 The Evaluation of the Undetermined Multipliers, α and β 40 2-4 Thermodynamic Connection 44)
Chapter 3 OTHER ENSEMBLES AND FLUCTUATIONS 51	
 3-1 Grand Canonical Ensemble 51 3-2 Other Ensembles 55 3-3 Fluctuations 57 	

AI COMIENI2
Chapter 4 BOLTZMANN STATISTICS, FERMI-DIRAC STATISTICS, AND BOSE-EINSTEIN STATISTICS 68
 4-1 The Special Case of Boltzmann Statistics 4-2 Fermi-Dirac and Bose-Einstein Statistics 73
Chapter 5 IDEAL MONATOMIC GAS 81
5-1 The Translational Partition Function 81 5-2 The Electronic and Nuclear Partition Functions 83 5-3 Thermodynamic Functions 85 5-4 A Digression on Atomic Term Symbols 87
Chapter 6 IDEAL DIATOMIC GAS 91
 6-1 The Rigid Rotor-Harmonic Oscillator Approximation 91 6-2 The Vibrational Partition Function 96 6-3 The Rotational Partition Function of a Heteronuclear Diatomic Molecule 98
 6-4 The Symmetry Requirement of the Total Wave Function of a Homonuclear Diatomic Molecule 101 6-5 The Rotational Partition Function of a Homonuclear Diatomic Molecule 104 6-6 Thermodynamic Functions 108
Chapter 7 CLASSICAL STATISTICAL MECHANICS 113
 7-1 The Classical Partition Function 113 7-2 Phase Space and the Liouville Equation 117 7-3 Equipartition of Energy 121
Chapter 8 IDEAL POLYATOMIC GAS 129
8-1 The Vibrational Partition Function 8-2 The Rotational Partition Function 133 8-3 Thermodynamic Functions 136 8-4 Hindered Rotation 138
Chapter 9 CHEMICAL EQUILIBRIUM 142

The Equilibrium Constant in Terms of Partition Functions

144

9-2 Examples of the Calculation of Equilibrium Constants

9-3 Thermodynamic Tables

	10			
Chapter	10	QUANTUM	STATISTICS	160

10-1 10-2 10-3	A Weakly Degenerate Ideal Fermi-Dirac Gas A Strongly Degenerate Ideal Fermi-Dirac Gas A Weakly Degenerate Ideal Bose-Einstein Gas 169
10–4	A Strongly Degenerate Ideal Bose-Einstein Gas 171
10-5	An Ideal Gas of Photons (Blackbody Radiation) 177
10-6	The Density Matrix 182
10–7	The Classical Limit from the Quantum Mechanical Expression for Q 185
	•
Chapi	ter 11 CRYSTALS 194
11–1	The Vibrational Spectrum of a Monatomic Crystal 194
11-2	The Einstein Theory of the Specific Heat of Crystals 197
11-3	The Debye Theory of the Heat Capacity of Crystals 200
11–4	Introduction to Lattice Dynamics 206
11-5	Phonons 212
11–6	Point Defects in Solids 214
Chapt	ter 12 IMPERFECT GASES 222
12–1	The Virial Equation of State from the Grand Partition Function 224
12-2	Virial Coefficients in the Classical Limit 226
12-3	Second Virial Coefficient 233
12–4	Third Virial Coefficient 237
12–5	Higher Virial Coefficients for the Hard-Sphere Potential 239
12–6	Quantum Corrections to $B_2(T)$ 241
12-7	The Law of Corresponding States 243
12–8	Conclusion 245
Chapt	er 13 distribution functions in classical
•	MONATOMIC LIQUIDS 254
13–1	Introduction 255
13–2	Distribution Functions 257
13–3	Relation of Thermodynamic Functions to $g(r)$ 261
13–4	The Kirkwood Integral Equation for $g(r)$ 264
13-5	The Direct Correlation Function 268
13–6	Density Expansions of the Various Distribution Functions 270
13–7	Derivation of Two Additional Integral Equations 274
13-8	Density Expansions of the Various Integral Equations 277
13_9	Comparisons of the Integral Equations to Experimental Data 279

Chapter 14 PERTURBATION THEORIES OF LIQUIDS 300
 14-1 Statistical Mechanical Perturbation Theory 14-2 The van der Waals Equation 304 14-3 Several Perturbation Theories of Liquids 306
Chapter 15 SOLUTIONS OF STRONG ELECTROLYTES 326
 15-1 The Debye-Hückel Theory 328 15-2 Some Statistical Mechanical Theories of Ionic Solutions 340
Chapter 16 KINETIC THEORY OF GASES AND MOLECULAR COLLISIONS 357
 16-1 Elementary Kinetic Theory of Transport in Gases 358 16-2 Classical Mechanics and Molecular Collisions 365 16-3 Mean-Square Momentum Change During a Collision 370
Chapter 17 CONTINUUM MECHANICS 379
 17-1 Derivation of the Continuity Equations 380 17-2 Some Applications of the Fundamental Equations of Continuum Mechanics 386 17-3 The Navier-Stokes Equation and Its Solution 391
Chapter 18 KINETIC THEORY OF GASES AND THE BOLTZMANN EQUATION 402
18-1 Phase Space and the Liouville Equation 402 18-2 Reduced Distribution Functions 405 18-3 Fluxes in Dilute Gases 406 18-4 The Boltzmann Equation 409 18-5 Some General Consequences of the Boltzmann Equation 411
Chapter 19 TRANSPORT PROCESSES IN DILUTE GASES 426
19-1 Outline of the Chapman-Enskog Method 426 19-2 Summary of Formulas 430 19-3 Transport Coefficients for Various Intermolecular Potentials 433 19-4 Extensions of the Boltzmann Equation 440

Chapter 20	THEORY	OF	BROWNIAN	MOTION	452
------------	--------	----	----------	--------	-----

- 20-1 The Langevin Equation 452
- 20-2 The Fokker-Planck Equation and the Chandrasekhar Equation 456

Chapter 21 THE TIME-CORRELATION FUNCTION FORMALISM, I 467

- 21-1 Absorption of Radiation 470
- 21-2 Classical Theory of Light Scattering 476
- 21-3 Raman Light Scattering 484
- 21-4 An Elementary Derivation of the Basic Formulas 489
- 21-5 Dielectric Relaxation 495
- 21-6 Time-Correlation Function Formalism of Molecular Spectroscopy 499
- 21-7 Derivation of the Basic Formulas from the Liouville Equation 507
- 21-8 Time-Correlation Function Expressions for the Thermal Transport Coefficients 512
- 21-9 Applications of the Time-Correlation Function Formulas for the Thermal Transport Coefficients 522

Chapter 22 THE TIME-CORRELATION FUNCTION FORMALISM, II 543

- 22-1 Inelastic Neutron Scattering 544
- 22–2 The Weiner–Khintchine Theorem 553
- 22-3 Laser Light Scattering 561
- 22–4 The Memory Function 572
- 22-5 Derivation of Thermal Transport Coefficients 579

Appendix A VALUES OF SOME PHYSICAL CONSTANTS AND ENERGY CONVERSION FACTORS 593

Appendix B FOURIER INTEGRALS AND THE DIRAC DELTA FUNCTION 595

Appendix C DEBYE HEAT CAPACITY FUNCTION 599

Appendix D HARD-SPHERE RADIAL DISTRIBUTION FUNCTION 600

Appendix E TABLES FOR THE m-6-8 POTENTIAL 604

Appendix F derivation of the golden rule of Perturbation theory $_{608}$

Appendix G the dirac bra and ket notation 612

Appendix H THE HEISENBERG TIME-DEPENDENT REPRESENTATION 615

Appendix I THE POYNTING FLUX VECTOR 618

Appendix J the radiation emitted by an oscillating dipole $_{622}$

Appendix K DIELECTRIC CONSTANT AND ABSORPTION 626

Index 631