プラズマ研究所

PRODUCTION AND MEASUREMENT OF HIGH TEMPERATURES

BY W. LOCHTE-HOLTGREVEN

Kiel University

WITH AN ADDENDUM (§6) BY

DR. R. SCHALL AND DR. F. WECKEN

Weil/Rhein

CONTENTS

	PAG
§ 1. Measurement of high temperatures	314
1.1. Introduction	314
1.1.1. Temperature and temperature equilibrium	314
1.1.2. Time required to establish temperature equilibrium	315
1.1.3. Effect of a temperature gradient in a light source	317
1.1.4. Effect of the optical depth of the emitting gas	317
1.2. Determination of temperature	317
1.2.1. The determination of the gas temperature in the	
case of an optically thick layer	317
1.2.2. The determination of the gas temperature in the	
case of an optically thin layer	318
1.2.3. The determination of the excitation and ionization	
temperature	319
1.3. The use of line broadening for the determination of the	
density n_e of electrons	321
1.3.1. Line broadening by impact	321
1.3.2. Statistical line broadening	322
1.3.2. (a). Perturbation by one particle	322
1.3.2. (b). Perturbation by several particles	323
1.3.3. Experimental proof of Holtsmark's theory	324
1.3.4. The evaluation of n_e from the apparent series limit	326
1.3.5. The diminution of the ionization potential within	
a plasma	328
1.3.6. The continuous radiation beyond the series limit.	328
1.4. Determination of temperatures beyond 15 000°K	330
1.4.1. Temperature evaluation from line intensities	330
1.4.2. Temperature evaluation from continuous radiation	332
1.5. Some plasma properties at high temperatures	33.
1.5.1. The composition of the plasma	33.
1.5.2. The dynamical viscosity of a plasma	334
1.5.3. The electrical conductivity of a plasma	35
1.5.4. The specific heat of a plasma and the thermal	
conductivity	338
δ 2. The production of high temperature by means of the electric arc	342
2.1. The arc technique	342
2.1.1. The free-burning arc	342
2.1.2. The low-voltage high-current arc	343
2.1.3. The Beck arc	344
2.1.4. The Gerdin diaphragm	34
2.1.5. The water-pipe arc	34(
2.1.6. Recent development of high temperature arc	
technique	34

核融	合科学研究所図書
洋	P752

2.2 The scientific use of the high temperatures obtained by area	PAGE
 2.2.1. The evaluation of transition probabilities 2.2.2. The evaluation of collision cross sections 2.2.3. The evaluation of plasma properties 2.3. The practical use of the high temperatures obtained by arcs 	349 350 351 352
2.3.1. The use of arcs in chemical industry	352
 § 3. High temperatures obtained with pulsed discharges and sparks 3.1. Methods for observation of pulsed light sources 3.2. Temperatures measured in pulsed discharges 3.3. The effect of pressure waves in pulsed discharges	352 352 353 354 355 357 358
§ 4. High temperatures obtained with exploding wires	358
4.1. The fundamental processes related to wire explosion 4.2. The evaluation of the temperature reached in the two stages of	358
the explosion	360
5 High temperatures obtained with plasma jots and sheel would	301
5.1. High temperatures obtained with plasma jets and shock waves	363
5.1.1. Plasma jets within arcs 5.1.2. The temperature of plasma jets ejected from arcs 5.1.3. The temperature of plasma jets ejected from arcs	363 364
with supersonic velocity	365 366 366 367
5.3. Further development to obtain higher temperatures with shock waves	369
5.3.1. Shock waves of different geometrical form	369
§ 6. High temperatures obtained with chemical reactions6.1. High temperatures obtained with detonations	370 370
6.1.1. The three mechanisms of reaction : combustion, explosion, detonation	370
wave	371
6.1.4. Temperatures of the detonation front	372 373 375
 6.2. High temperatures obtained with shock waves from detonations 6.2.1. Shock wave generation by detonation 6.2.2. The luminosity of shock waves 6.2.3. Shock waves from nuclear explosions 	376 376 378 379
References	380

Abstract. The article is based mainly upon the study of thermally excited plasmas with temperatures in the range of 10 000-70 000°K. In case of no self-absorption the measurement of these temperatures can be effected by observation of lines or of continuous radiation emitted from the plasma. The study of lines implies both line intensities and line shapes.