CONTENTS | Preface to the third Russian edition | | xili | | | |--|---|---|--|--| | From the prefaces to previous Russian editions | | | | | | Notation | | | | | | | I. THE FUNDAMENTAL PRINCIPLES OF STATISTICAL PHYSICS | * | | | | 000000 | Statistical distributions Statistical independence Liouville's theorem The significance of energy | 1
6
9
11 | | | | 80000 | 5. The statistical matrix 6. Statistical distributions in quantum statistics 7. Entropy 8. The law of increase of entropy | 14
21
23
29 | | | | | II. THERMODYNAMIC QUANTITIES | | | | | ららまるののののののののののののののののの の | 9. Temperature 10. Macroscopic motion 11. Adiabatic processes 12. Pressure 13. Work and quantity of heat 14. The heat function 15. The free energy and the thermodynamic potential 16. Relations between the derivatives of thermodynamic quantities 17. The thermodynamic scale of temperature 18. The Joule-Thomson process 19. Maximum work 20. Maximum work done by a body in an external medium 21. Thermodynamic inequalities 22. Le Chatelier's principle 23. Nernst's theorem 24. The dependence of the thermodynamic quantities on the number of particles 25. Equilibrium of a body in an external field 26. Rotating bodies 27. Thermodynamic relations in the relativistic region | 344
3638
4144
4748
5155
5665
5759
6365
6870
7374
76 | | | | | III. THE GIBBS DISTRIBUTION | | | | | 000000000 | 28. The Gibbs distribution 29. The Maxwellian distribution 30. The probability distribution for an oscillator 31. The free energy in the Gibbs distribution 32. Thermodynamic perturbation theory 33. Expansion in powers of ħ | 79
82
87
91
95
98 | | | | vi | Contents | |-----|----------| | 7.1 | Comenia | | § | 34. The Gibbs distribution for rotating bodies35. The Gibbs distribution for a variable number of particles36. The derivation of the thermodynamic relations from the Gibbs distribution | 104
106
109 | |--|--|---| | | IV. IDEAL GASES | | | <i>•••••••••••••••••••••••••••••••••••••</i> | 37. The Boltzmann distribution 38. The Boltzmann distribution in classical statistics 39. Molecular collisions 40. Ideal gases not in equilibrium 41. The free energy of an ideal Boltzmann gas 42. The equation of state of an ideal gas 43. Ideal gases with constant specific heat 44. The law of equipartition 45. Monatomic ideal gases 46. Monatomic gases. The effect of the electronic angular momentum 47. Diatomic gases with molecules of unlike atoms. Rotation of molecules 48. Diatomic gases with molecules of like atoms. Rotation of molecules 49. Diatomic gases. Vibrations of atoms 50. Diatomic gases. The effect of the electronic angular momentum 51. Polyatomic gases | 111
113
115
118
120
121
125
129
132
135
137
141
143
144
148 | | ğ | 52. Magnetism of gases | 152 | | | V. THE FERMI AND BOSE DISTRIBUTIONS | | | 00000000000000000000000000000000000000 | 53. The Fermi distribution 54. The Bose distribution 55. Fermi and Bose gases not in equilibrium 56. Fermi and Bose gases of elementary particles 57. A degenerate electron gas 58. The specific heat of a degenerate electron gas 59. Magnetism of an electron gas. Weak fields 60. Magnetism of an electron gas. Strong fields 61. A relativistic degenerate electron gas 62. A degenerate Bose gas 63. Black-body radiation | 158
159
160
162
166
168
171
175
178
180
183 | | | VI. SOLIDS | | | | 64. Solids at low temperatures 65. Solids at high temperatures 66. Debye's interpolation formula 67. Thermal expansion of solids 68. Highly anisotropic crystals 69. Crystal lattice vibrations 70. Number density of vibrations 71. Phonons 72. Phonon creation and annihilation operators 73. Negative temperatures | 191
195
198
201
203
207
211
215
218
221 | | | VII. NON-IDEAL GASES | | | ş | 74. Deviations of gases from the ideal state 75. Expansion in powers of the density 76. Van der Waals' formula 77. Relationship of the virial coefficient and the scattering amplitude 78. Thermodynamic quantities for a classical plasma | 225
230
232
236
239 | | | · | | | | | |---|---|---------------------|--|--|--| | | Contents | vii | | | | | | 79. The method of correlation functions | 243 | | | | | § | 80. Thermodynamic quantities for a degenerate plasma | 245 | | | | | | VIII. PHASE EQUILIBRIUM | | | | | | | 81. Conditions of phase equilibrium | 251 | | | | | | 82. The Clapeyron-Clausius formula | 255
257 | | | | | | 83. The critical point 84. The law of corresponding states | 260 | | | | | 8 | | | | | | | | IX. SOLUTIONS | | | | | | _ | 85. Systems containing different particles | 263 | | | | | | 86. The phase rule 87. Weak solutions | 264
265 | | | | | § | 88. Osmotic pressure | 267 | | | | | § | 89. Solvent phases in contact | 268 | | | | | | 90. Equilibrium with respect to the solute | 271 | | | | | - | 91. Evolution of heat and change of volume on dissolution | 274 | | | | | | 92. Solutions of strong electrolytes | 277
2 7 9 | | | | | ~ | 93. Mixtures of ideal gases 94. Mixtures of isotopes | 281 | | | | | | 95. Vapour pressure over concentrated solutions | 283 | | | | | § | 96. Thermodynamic inequalities for solutions | 286 | | | | | § | 97. Equilibrium curves | 289 | | | | | | 98. Examples of phase diagrams | 295
300 | | | | | | 99. Intersection of singular curves on the equilibrium surface 100. Gases and liquids | 300
301 | | | | | 8 | 100. Gases and negution | 50. | | | | | | X. CHEMICAL REACTIONS | | | | | | | 101. The condition for chemical equilibrium | 305 | | | | | | 102. The law of mass action | 306 | | | | | - | 103. Heat of reaction 104. Ionisation equilibrium | 310
313 | | | | | - | 105. Equilibrium with respect to pair production | 315 | | | | | • | • | | | | | | XI. PROPERTIES OF MATTER AT VERY HIGH DENSITY | | | | | | | | 106. The equation of state of matter at high density | 317 | | | | | | 107. Equilibrium of bodies of large mass 108. The energy of a gravitating body | 320
327 | | | | | | 109. Equilibrium of a neutron sphere | 329 | | | | | | XII. FLUCTUATIONS | | | | | | Ş | 110. The Gaussian distribution | 333 | | | | | ş | 111. The Gaussian distribution for more than one variable | 335 | | | | | • | 112. Fluctuations of the fundamental thermodynamic quantities | 338 | | | | | | 113. Fluctuations in an ideal gas | 345 | | | | | | 114. Poisson's formula 115. Fluctuations in solutions | 347
349 | | | | | | 116. Spatial correlation of density fluctuations | 350 | | | | | | 117. Correlation of density fluctuations in a degenerate gas | 354 | | | | | | 118. Correlations of fluctuations in time | 359 | | | | | § | 119. Time correlations of the fluctuations of more than one variable | 363 | | | | viii Contents | § 12
§ 12
§ 12 | 20. The symmetry of the kinetic coefficients 21. The dissipative function 22. Spectral resolution of fluctuations 23. The generalised susceptibility 24. The fluctuation—dissipation theorem | 365
368
371
377
384 | | | | | | |--------------------------------|--|---------------------------------|--|--|--|--|--| | | 25. The fluctuation-dissipation theorem for more than one variable | 389 | | | | | | | | 26. The operator form of the generalised susceptibility | 393 | | | | | | | | 27. Fluctuations in the curvature of long molecules | 396 | | | | | | | XIII. THE SYMMETRY OF CRYSTALS | | | | | | | | | 8 11 | 28. Symmetry elements of a crystal lattice | 401 | | | | | | | 8 12 | 29. The Bravais lattice | 403 | | | | | | | | 30. Crystal systems | 40: | | | | | | | • | 31. Crystal classes | 409 | | | | | | | | 32. Space groups | 413 | | | | | | | | 33. The reciprocal lattice | 413 | | | | | | | | 34. Irreducible representations of space groups | 416 | | | | | | | | 35. Symmetry under time reversal | 422 | | | | | | | | 36. Symmetry properties of normal vibrations of a crystal lattice | 42 | | | | | | | | 37. Structures periodic in one and two dimensions | 432 | | | | | | | | 38. The correlation function in two-dimensional systems | 436 | | | | | | | | 39. Symmetry with respect to orientation of molecules | 438 | | | | | | | | 40. Nematic and cholesteric liquid crystals | 440 | | | | | | | | 41. Fluctuations in liquid crystals | 442 | | | | | | | 3 . | 11. 1 Institutions in inquire oxystats | | | | | | | | | XIV. PHASE TRANSITIONS OF THE SECOND KIND AND CRITICAL | | | | | | | | | PHENOMENA | | | | | | | | | THENOMENA | | | | | | | | § 1 | 42. Phase transitions of the second kind | 446 | | | | | | | \$ 14 | 43. The discontinuity of specific heat | 451 | | | | | | | § 14 | 44. Effect of an external field on a phase transition | 450 | | | | | | | § 1 | 45. Change in symmetry in a phase transition of the second kind | 459 | | | | | | | § 14 | 46. Fluctuations of the order parameter | 47 | | | | | | | § 1 | 47. The effective Hamiltonian | 478 | | | | | | | § 1 | 48. Critical indices | 483 | | | | | | | § 1 | 49. Scale invariance | 489 | | | | | | | \$ 1. | 50. Isolated and critical points of continuous transition | 493 | | | | | | | § 1: | 51. Phase transitions of the second kind in a two-dimensional lattice | 498 | | | | | | | § 1. | 52. Van der Waals theory of the critical point | 500 | | | | | | | § 1 | 53. Fluctuation theory of the critical point | 51 | | | | | | | | XV. SURFACES | | | | | | | | | | 51 | | | | | | | | 54. Surface tension | 00000000 | | | | | | | | 55. Surface tension of crystals | 520 | | | | | | | | 56. Surface pressure | 522 | | | | | | | § 1. | 57. Surface tension of solutions | 524 | | | | | | | | 58. Surface tension of solutions of strong electrolytes | 520 | | | | | | | | 59. Adsorption | 52°
529 | | | | | | | | 60. Wetting | | | | | | | | • | 61. The angle of contact | 53 | | | | | | | § 1 | 62. Nucleation in phase transitions | 533 | | | | | | | § 1 | 63. The impossibility of the existence of phases in one-dimensional systems | 53 | | | | | | | Inc | dex | 539 | | | | | |