CONTENTS

I. ELEMENTS OF CLASSICAL MECHANICS	
 Introductory Remarks Lagrangian Formalism Hamiltonian Formalism Poisson Brackets and Canonical Transformations Action Angle Variables and Hamilton-Jacobi Theory Integral Invariants of Poincaré References List of Symbols 	1 2 9 19 28 34 44 48
II. THE LIOUVILLE EQUATION AND DISTRIBUTION FUNCTIONS	
 The Concept of the Ensemble and the Liouville Equation Solution of the Liouville Equation The Prigogine Analysis of the Liouville Equation The Third Interpretation of D: The N-Particle Distribution Function, f_N The Dynamics of a System in Terms of f_N: Reduced Distributions The BBKGY Equations Conditional and s-tuple Distribution Functions (a) Conditional Probability (b) Chapman-Kolmogorov Equation (c) 1-Tuple Distributions References List of Symbols 	81
III. FORMAL DEVELOPMENT OF KINETIC EQUATIONS AND THEIR RELATION TO FLUID DYNAMICS	
 The One-Particle Distribution Function and its Relation to Fluid Dynamics The Bogoliubov Analysis of the BBKGY Equations Cluster Expansions Definition of a Kinetic Equation: Self-Consistent Solutions Formal Expression for \$\mathscr{C}_2\$ in the Homogeneous Limit The Radial Distribution Function and the Equation of State 	123 126 142 155 160 164

X	Contents
Λ.	Contents

References List of Symbols	174 177
IV. DERIVATIONS AND PROPERTIES OF THE BOLTZMANN, KROOK-BHATNAGER-GROSS, FOKKER-PLANCK, AND RELATED EQUATIONS	WOO
1. Further Comments on Irreversibility	180
2. Collision Concepts	183
3. Boltzmann Equation	206
(a) The Boltzmann Derivation	206
(b) Grad's Derivation	218
(c) Kirkwood's Derivation	225
4. Properties of the Boltzmann Collision Operator	228
(a) Summational Invariants	228
(b) The Conservation Equations	231
(c) Boltzmann's <i>H</i> -Theorem	238
(d) The Maxwellian Distribution	243
(e) The Inhomogeneous Case Including an External Force	246
5. The Krook-Bhatnager-Gross Equation	247
6. The Fokker-Planck Equation	252
(a) Long-Range Collisions	252
(b) Derivation From the Boltzmann Equation	255
(c) Derivation From the Chapman-Kolmogorov Equation	260
(d) \mathcal{H} -Theorem	267
(e) Related Equations	271
References	278
List of Symbols	281
V. SOLUTION AND FURTHER PROPERTIES OF THE BOLTZMAN EQUATION. THE APPROACH TO EQUILIBRIUM	e 2
1. The Chapman-Enskog Analysis of the Boltzmann Equation.	
Small Mean-Free-Path Approximation	286
(a) Transport Coefficients	286
(b) Formal Expansion and Solution	290
2. Properties of the Linear Boltzmann Collision Operator	306
(a) Symmetry of the Kernal	306
(b) Positive Eigenvalues and Summational Invariant Eigenvectors	308
(c) Further Properties of \mathscr{L} and ν_n	311
3. The Moment Method	315
4. The Approach to Equilibrium	319
(a) Further Comments on Irreversibility	319

Contents	X

(b) The Equilibrium Distributions: Microstates and Macrostates:	
The A Priori Approach	325
(c) The Most Probable Macroscopic State	335
(d) Γ-Space Description for Imperfect Systems: Ensembles	340
(e) Fluctuations	357
5. The A Posteriori Approach: Ergodic Hypothesis	361
6. Coarse Graining	367
References	371
List of Symbols	378
APPENDIX 1.	
Vector Calculus, Tensor Notation, and Some Useful Integrals	381
APPENDIX 2.	
Physical Constants	387
Useful Conversion Constants and Units	388
APPENDIX 3.	
The Founders of Dynamics and the Times They Lived In	389
INDEX	391