Contents

	Authors Preface	v vii
1	The laws of thermodynamics (P.T.Landsberg)	1
•	Mathematical preliminaries	1
	Quasistatic changes	4
	The First Law	6
	The Second Law	9
	Simple ideal fluids	11
	Joule-Thomson effect	21
	Thermodynamic cycles	23
	Chemical thermodynamics	28
	The Third Law	33
	Phase changes	34
	Thermal and mechanical stability	37
2	Statistical theory of information and of ensembles (P.T.Landsberg)	44
	Entropy maximisation: ensembles	44
	Partition functions in general	48
	Entropy maximisation: probability distributions	51
	Most probable distribution method	53
	Some general principles	60
3	Statistical mechanics of ideal systems (P.T.Landsberg)	63
	Maxwell distribution	63
	Classical statistical mechanics	67
	Virial theorem	72
	Oscillators and phonons	74
	The ideal quantum gas	80
	Constant pressure ensembles	92
	Radiative emission and absorption	93
4	Ideal classical gases of polyatomic molecules (C.J. Wormald)	98
	The translational partition function	98
	Thermodynamic properties and the theory of fluctuations	100
	The classical rotational partition function	103
	The quantum mechanical rotational partition function	105
	A convenient formula for the high temperature rotational partition function	108
	Thermodynamic properties arising from simple harmonic moder of vibration	110
	Corrections to the rigid rotator-harmonic oscillator model	113
	Contributions to the thermodynamic properties arising from low lying electronic energy levels	118
	Calculation of the thermodynamic properties of HCl from spectroscopic data	121
	Thermodynamic properties of ethane	127

ii Contents

5	Ideal relativistic classical and quantum gases (P.T.Landsberg)	132
6	Non-electrolyte liquids and solutions (A.J.B. Cruickshank) Cell theories of the liquid state Equation of state treatment of liquids Binary solutions	140 142 154 168
7	Phase stability, co-existence, and criticality (A.J.B.Cruickshank) Singulary systems Binary systems	193 193 214
8	Surfaces (J.M. Haynes) The Gibbs model of a surface	230 230
9	The imperfect classical gas (P.C.Hemmer) The equation of state The virial expansion Pair distribution function. Virial theorem	246 246 254 261
10	The imperfect quantum gas (D. ter Haar) The equation of state Second quantisation formalism	270 270 278
11	Phase transitions (D. ter Haar) Einstein condensation of a perfect boson gas Vapour condensation Hard sphere gas	282 282 289 293
12	Cooperative phenomena (D. ter Haar)	303
13	Green function methods (D. ter Haar) Mathematical preliminaries General formalism The Kubo formula The Heisenberg ferromagnet	319 319 320 323 324
14	The plasma (D. ter Haar)	333
15	Negative temperatures and population inversion (U.M. Titulaer) Dynamic polarization A model of laser action	341 346 348
16	Recombination rate theory in semiconductors (J.S.Blakemore)	350
17	Transport in gases (D.J.Griffiths)	378
18	Transport in metals (J.M.Honig)	401
19	Transport in semiconductors (J.M.Honig)	432
20	Fluctuations of energy and number of particles (C.W.McCombie)	448
21	Fluctuations of general classical mechanical variables (C. W.McCombie)	457
22	Fluctuations of thermodynamic variables: constant pressure systems, isolated systems (C.W.McCombie)	465

Contents	iii
Ourtents	111

23 Time dependence of fluctuations: correlation functions, power spectra, Wiener-Khintchine relations (C. W.McCombie)	472
24 Nyquist's theorem and its generalisations (C. W.McCombie)	489
25 Onsager relations (C. W.McCombie)	502
26 Stochastic methods: master equation and Fokker-Planck equation (I. Oppenheim, K.E. Shuler, G.H. Weiss)	511
27 Ergodic theory, H-theorems, recurrence problems (D. ter Haar)	531
28 Variational principles and minimum entropy production (S.Simons) Macroscopic principles Electron flow problems	549 549 557
Author index Subject index	563 565