CONTENTS

I. INTRODUCTION

1.	Statement of the Problem	•		1
	II. MATHEMATICAL TOOL	\mathbf{S}		
2.	Sets		•	3
3.	Mapping			7
4.	Point Sets in the <i>n</i> -dimensional Vector Spac	$e R^n$		9
5.	Topological Mapping in Vector Spaces	•		16
6.	Systems of Ordinary Differential Equations			18
7.	The Lebesgue Measure			24
8.	The Lebesgue Integral			29
9.	Hilbert Spaces			38
	References		•	45
	III. THE PHASE FLOWS OF MECH	ANI	CAI	J
	SYSTEMS			
10.	Mechanical Systems	-		47
11.	Phase Flow: Liouville's Theorem			52
12.	Stationary Measure-conserving Phase Flow:	•	•	
	Poincaré's, Hopf's and Jacobi's Theorems			57
13.	The Theorems of v. Neumann and Birkho	ff: T	he	
	Ergodic Hypothesis			66
	References	•		76
	IV. THE INITIAL DISTRIBUTIO	ON C	F	
	PROBABILITY IN THE PHASE S	SPAC	CE	
14	A Formal Description of the Concept of Pro	hahili	taz	77
14.	On the Application of the Concept of Probal	bility	Uy	80
10.	References	omiy		87
		•	٠	01
Ţ	V. PROBABILITY DISTRIBUTION	s wi	HICI	H
	DEPEND ON TIME			
16.	Mechanical Systems with General Equat	ions	of	
	Motion	•		88
17.	Hamiltonian and Newtonian Systems .			93
18.	The Initial Value Problem			103
19.	The Approach of Mechanical Systems	towar	ds	
	States of Statistical Equilibrium .			110
	References			119

CONTENTS

VI. TIME-INDEPENDENT PROBABILITY DISTRIBUTIONS

21.	Gibbs's Canonic	Proba	ability	, Disti	ibutic	n		129
	References		. `	•				141

VII. STATISTICAL THERMODYNAMICS

22.	The Equation	on of Sta	\mathbf{te}	•	•				142
23.	The Fundar	nental L	aws of	f The	rmody	ynami	cs.		153
24.	Entropy and Probability								165
	References	•		٠	٠	•	•	•	175
INI	DEX	•			•	•			177

х