Contents

Pre	FACE		ix
On	Мат	HEMATICAL SYMBOLS	χv
1.	INT	RODUCTION	1
	1.1.	Distinction of kinetic theory	1
	1.2.	Main problems	7
2.	THE	E LIOUVILLE EQUATION	13
	2.1.	Dynamics of N particles	13
		The Liouville equation	20
		Solutions of the Liouville equation	22
		Distribution functions of subsystems and	
		their evolution	29
	2.5.	Distribution functions in generic phase spaces	35
	Exer	cises	36
PA	RT I	. Gases in Moderate States	
3.	THI	E BBGKY HIERARCHY	41
	3.1.	Introductory remarks	41
		The symmetry assumption of distribution functions in	
		the microscopic sense	44
	3.3.	The symmetry of distribution functions in time average	
		and the derivation of the BBGKY hierarchy	48
	3.4.	Physical implications of the BBGKY hierarchy	55

CONTENTS

	3.5. The symmetry assumption of distribution functions in ensemble average	59
	Exercises	63
4.	THE BOLTZMANN EQUATION	65
	4.1. Introduction	65
	4.2. Necessary assumptions	68
	4.3. Derivation	70
	4.4. Physical implications of the Boltzmann equation	78
	Exercises	87
5.	THE DERIVATION OF THE NAVIER-STOKES	
	EQUATIONS	88
	5.1. Equations of moments	88
	5.2. The Chapman-Enskog theory	91
	5.3. An integral equation equivalent to the Boltzmann equation and its application	96
	5.4. The macroscopic variables of a gas on the surface of	
	a wall	105
	Exercises	108
PA	RT II. Rarefied Gases	
6.	ASSUMPTION NECESSARY FOR THE DERIVATION	
	OF THE NAVIER-STOKES EQUATIONS	111
	6.1. Introductory remarks	111
	6.2. The criterion of the convergence of the Chapman-	
	Enskog series	113
	6.3. Simple application of the criterion	116
	Exercises	117
7.	KINETIC-THEORETICAL CHARACTERISTICS OF	
	DYNAMICS OF RAREFIED GASES	118
	7.1. Distribution function near a wall	118
	7.2. Boundary conditions of moments	123
	7.3. Usage of boundary condition of moments	131

	CONT	EN 15
	7.4. Approaches developed for rarefied gas dynamics7.5. Free molecule flow	143 149
	Exercises	154
	,	
PA	RT III. Ionized Gases	
8.	DIFFICULTIES IN KINETIC THEORY APPLIED	
	TO CHARGED PARTICLES	159
	8.1. Introductory remarks	159
	8.2. The Fokker-Planck presentation of the Boltzmann	
	integral for weak interactions	160
	8.3. Divergence of the Boltzmann integral of collision due	
	to the Coulomb force	164
	8.4. The cause of the divergence of the Boltzmann col-	
	lision integral	167
	8.5. The difficulty in the BBGKY hierarchy	173
	8.6. The Vlasov equation	174
	Exercises	178
9.	KINETIC EQUATIONS FOR IONIZED GASES	179
	9.1. General scheme	179
	9.2. The probability of two particles being their mutual	
	nearest neighbors	183
	9.3. Separation of particles in pairs of mutual nearest	
	neighbors	186
	9.4. Model (scheme of approximation) I	188
	9.5. Model (scheme of approximation) II	208
	9.6. Model (scheme of approximation) III	211
	9.7. Remarks on the difficulties in real systems	215
	Exercises	216

CONTENTS

CONCLUDING REMARKS			
AP	PENDICES		
A.	The Boltzmann Collision Integral	221	
	A.1. Dynamics of two-particle interaction	221	
	A.2. Moments of the collision integral	230	
	A.3. The Bhatnagar-Gross-Krook model	233	
B.	Difficulties in the Usual Derivations of the Boltzmann		
	Equation	238	
C.	Kinetic Theories which are not Based on the BBGKY		
	Hierarchy	244	
D.	A Mathematical Theorem	249	
E.	Quantum-mechanical Systems	251	
F.	On the Definition of Distinguishability or of Indistinguish-		
	ability of Similar Particles in Statistical Mechanics and in		
	Kinetic Theory	255	
G.	An Historical Sketch of Kinetic Theory	261	
RE	REFERENCES		
NA	NAME INDEX		
SU	SUBJECT INDEX		
Other Titles in the Series		297	