Contents

Nota	tions and Conventions	I
C	hapter 1 Introduction	
. What statistical mechanics is abou	t	5
2. The problem of knowledge		6
 Getting around the lack of initial of separating a few degrees of freedo. 		7
4. Getting around the lack of initial		, 8
5. The art and science of guessing		1
o. The art and science of guessing	1	1
C	Chapter 2 Information	
1. Definition of information	1	4
2. An illustration	1	7
3. Missing information when a		
probability distribution is given	1	8
4. An infinite choice problem	2	0
5. A continuous choice problem	2	0
_		
Chapter $oldsymbol{3}$	Statistical Mechanics	
1. Introduction	2	3
2. Classical mechanics	2	3
3. Canonical transformations	2	6
4. Classical statistics	2	8
5. The missing information	3	1
6. Quantum mechanics	3	32
7. Quantum statistics	3	14
8. The missing information	3	7

Chapter 4 Choice of Probabilities

1.	The truth, the whole truth	39
2.	Nothing but the truth	40
3.	Maximum missing information—classical	42
	Maximum missing information—quantum mechanical	45
	Existence and uniqueness of the solution	47
	The Legendre transform	50
	Chapter 5 General Considerations	
1.	The value of information and its age	52
2.	The concept of "Simple quantities"	53
3.	Past, future, and irreversibility	55
4.	The role of constants of the motion. Thermal equilibrium	57
	Chapter 6 Equilibrium	
	Scope of our treatment	59
	Choice of known constants of the motion	59
	Equilibrium calculation	62
	Mechanical and statistical Lagrange multipliers	63
	Internal properties	65
	The meaning of β	66
7.	β and temperature	68
8.	The adiabatic theorem	71
	Classical adiabatic theorem	72
10.	0. Quantum mechanical adiabatic theorem	
11.	1. The most general equilibrium	
12.	Work and heat	81
13.	Persistence of special equilibrium	84
14.	Ideal heat machines	90
	Chapter 7 Identical Particles	
1	Identical particles	98
	A classical ideal gas of identical particles	96
	The number of particles as a dynamical quantity	99
	Grand canonical description of the classical ideal gas	103
		103
	The quantum mechanical ideal gas	104
	Chemical equilibrium	111
	Degenerate quantum ideal gases	111
	Second quantization and the grand canonical approach Problems	121
٦,	TOOKING	121

Chapter 8 Small Deviations from Equilibriun	Chapter 8	Small	Deviations	from	Equilibriun
---	-----------	-------	------------	------	-------------

1.	Introduction	122
2.	Small deviations from equilibrium	122
3.	Phenomenological equations	124
4.	Onsager coefficients and Onsager relations	126
	Diffusion	132
6.	The diffusion coefficient	134
7.	Connection with Einstein's treatment of diffusion	137
8.	Dynamical disturbance of equilibrium	139
9.	Electric conductivity	142
10.	Alternating currents. The fluctuation-dissipation theorem	144
	Quantum mechanical modifications	145
	Chapter 9 Nonequilibrium Equations	
1.	Introduction	149
2.	Density in the phase space of N particles	150
3.	Density in the phase space of one particle	152
	Equation of motion	<i>153</i>
	The phenomenological time derivative	155
6.	The Boltzmann equation	158
7.	Phenomenological increase of entropy	159
8.	The Maxwell-Boltzmann distribution of momenta	162
9.	The quantum case	165
10.	Projection operators as information	166
11.	Time development of the occupation probabilities	168
12.	The master equation	169
13.	Properties of the master equation	
	as a differential equation	171
14.	The master equation for long times	173
	Appendix A: Constants and units	177
	Appendix B: The classical analogue	
	of second quantization	178