Contents

1.	Goal		
	1.1	Order and Disorder: Some Typical Phenomena	1
	1.2	Some Typical Problems and Difficulties	12
	1.3	How We Shall Proceed	15
2.	Proba	bility	
	2.1	Object of Our Investigations: The Sample Space	17
	2.2	Random Variables	19
	2.3	Probability	20
	2.4	Distribution	21
	2.5	Random Variables with Densities	24
	2.6	Joint Probability	26
	2.7	Mathematical Expectation $E(X)$, and Moments	28
	2.8	Conditional Probabilities	29
	2.9	Independent and Dependent Random Variables	30
	2.10*	Generating Functions and Characteristic Functions	31
	2.11	A Special Probability Distribution: Binomial Distribution	33
	2.12	The Poisson Distribution	36
	2.13	The Normal Distribution (Gaussian Distribution)	37
	2.14	Stirling's Formula	39
	2.15*	Central Limit Theorem	39
3.	Infor	nation	
	3.1	Some Basic Ideas	41
	3.2*	Information Gain: An Illustrative Derivation	46
	3.3	Information Entropy and Constraints	48
	3.4	An Example from Physics: Thermodynamics	53
	3.5*	An Approach to Irreversible Thermodynamics	57
	3.6	Entropy—Curse of Statistical Mechanics?	66
4.	Chan	ce	
	4.1	A Model of Brownian Movement	69
	4.2	The Random Walk Model and Its Master Equation	75
	4.3*	Joint Probability and Paths. Markov Processes. The Chapman-	
		Kolmogorov Equation. Path Integrals	79

* Sections with an asterisk in the heading may be omitted during a first reading.

	4.4*	How to Use Joint Probabilities. Moments. Characteristic	
		Function. Gaussian Processes	85
	4.5	The Master Equation	88
	4.6	Exact Stationary Solution of the Master Equation for Systems	
		in Detailed Balance	89
	4.7*	The Master Equation with Detailed Balance. Symmetrization,	
	-. /	Eigenvalues and Eigenstates	92
	4.8*	Kirchhoff's Method of Solution of the Master Equation	95
	4.9*		97
			77
	4.10	The Meaning of Random Processes, Stationary State,	98
		Fluctuations, Recurrence Time	90
	4.11*	Master Equation and Limitations of Irreversible Thermo-	100
		dynamics	102
5.	Neces	sitv	
2.		-	105
	5.1	Dynamic Processes	103
	5.2*	Critical Points and Trajectories in a Phase Plane. Once Again	142
		Limit Cycles	113
	5.3*	Stability	120
	5.4	Examples and Exercises on Bifurcation and Stability	126
	5.5*	Classification of Static Instabilities, or an Elementary	
		Approach to Thom's Theory of Catastrophes	133
6.	Chan	ce and Necessity	
	6.1	Langevin Equations: An Example	147
	6.2*	Reservoirs and Random Forces	152
	6.3	The Fokker-Planck Equation	158
	6.4	Some Properties and Stationary Solutions of the Fokker-	
	0.1	Planck-Equation	165
	6.6	Time-Dependent Solutions of the Fokker-Planck Equation	172
	6.6*	Solution of the Fokker-Planck Equation by Path Integrals	176
		Phase Transition Analogy	179
	6.7	Phase Transition Analogy	177
	6.8	Phase Transition Analogy in Continuous Media: Space-	186
		Dependent Order Parameter	160
7.	Self-	Organization	
	7.1	Organization	191
	7.2	Self-Organization	194
		The Role of Fluctuations: Reliability or Adaptibility?	
	7.3		200
	74*	Switching	200
	.7.4*	Adiabatic Elimination of Fast Relaxing Variables from the	202
		Fokker-Planck Equation	202
	7.5*	Adiabatic Elimination of Fast Relaxing Variables from the	204
		Master Equation	204
	7.6	Self-Organization in Continuously Extended Media. An	205
		Outline of the Mathematical Approach	205

7.7*	Generalized Ginzburg-I	lar	nda	au	E	qu	ati	or	is t	foi	: N	loi	nec	qui	ilit	ori	un	n	
	Phase Transitions		•			•												•	206
7.8*	Higher-Order Contribut	tio	ns	tc	C	d er	ier	ali	ze	d	Gi	nz	bu	rg.	-L	an	da	u	
	Equations																		216
	Lyuanons		•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	٠	•	210
7.9*																		•	210
7.9*		inı	101	usl	y	Ex	ter	nd	ed	Ν	on	eq	uil	lib	riu	ım	Ľ,		210
7.10*	Scaling Theory of Cont	inı · ·		usl	у	Ex ·	ter	nd	ed	N	on	eq	uil	lib	riu	ım •	•	•	219 222

8. Physical Systems

8.1	Cooperative Effects in the Laser: Self-Organization and Phase	
	Transition	229
8.2	The Laser Equations in the Mode Picture	230
8.3	The Order Parameter Concept	231
8.4	The Single-Mode Laser	232
8.5	The Multimode Laser	235
8.6	Laser with Continuously Many Modes. Analogy with Super-	
	conductivity	237
8.7	First-Order Phase Transitions of the Single-Mode Laser	240
8.8	Hierarchy of Laser Instabilities and Ultrashort Laser Pulses .	243
8.9	Instabilities in Fluid Dynamics: The Bénard and Taylor	
	Problems	249
8.10	The Basic Equations	250
8.11	The Introduction of New Variables	252
8.12	Damped and Neutral Solutions $(R \le R_c)$	254
8.13	Solution Near $R = R_c$ (Nonlinear Domain). Effective Langevin	
	Equations	258
8.14	The Fokker-Planck Equation and Its Stationary Solution	262
8.15	A Model for the Statistical Dynamics of the Gunn Instability	
	Near Threshold	266
8.16	Elastic Stability: Outline of Some Basic Ideas	270

9. Chemical and Biochemical Systems

9.1	Chemical and Biochemical Reactions	275
9.2	Deterministic Processes, Without Diffusion, One Variable	275
9.3	Reaction and Diffusion Equations	280
9.4	Reaction-Diffusion Model with Two or Three Variables:	
	The Brusselator and the Oregonator	282
9.5	Stochastic Model for a Chemical Reaction Without Diffusion.	
	Birth and Death Processes. One Variable	289
9.6	Stochastic Model for a Chemical Reaction with Diffusion.	
	One Variable	294
9.7*	Stochastic Treatment of the Brusselator Close to Its Soft-	
	Mode Instability	298
9.8	Chemical Networks	302

XIV Contents

10.	Applications to Biology	
	10.1 Ecology, Population-Dynamics	305 309 310 311 314 325
11.	Sociology and Economics	
	11.1 A Stochastic Model for the Formation of Public Opinion11.2 Phase Transitions in Economics	327 329
12.	Chaos	
	 12.1 What is Chaos? 12.2 The Lorenz Model. Motivation and Realization 12.3 How Chaos Occurs 12.4 Chaos and the Failure of the Slaving Principle 12.5 Correlation Function and Frequency Distribution 12.6 Discrete Maps, Period Doubling, Chaos, Intermittency 	333 334 336 341 343 345
13.	Some Historical Remarks and Outlook	351
Ref	erences, Further Reading, and Comments	355
Sut	oject Index	367