T / 1 /

Introduction		XI
	PART I GENERAL THEORY	
CHAPTER I	Conservation Laws and Balance Equations .	1
	1. General form of a balance equation .	1
	2. Conservation of mass	4
	3. Conservation of momentum and equation	
	of motion	6
	4. Conservation of energy	8
CHAPTER II	The Second Law of Thermodynamics and the	ŧ
	Entropy Balance Equation	12
	1. The second law of thermodynamics .	12
	2. Local equilibrium	14
	3. Entropy balance equation	16
	4. Basic thermodynamic relations	19
	5. Second order differential of entropy.	23
	6. Use of complex variables	27
CHAPTER III	Linear Thermodynamics of Irreversible Pro-	
	cesses	30
	1. Flows and forces	30
	2. Onsager's reciprocity relations	32
	3. Symmetry requirements on coupling of Ir-	
	reversible processes	33
	4. Non-equilibrium steady states and theorem	
	of minimum entropy production	34
	5. Chemical reactions	38
	6. Concluding remarks	41
CHAPTER IV	Gibbs-Duhem Stability Theory of Thermo-	
	dynamic Equilibrium	44
	1. Introduction	44
	2. Gibbs-Duhem stability criterion	44
	3. Explicit form of the stability conditions .	46

v

	4. Phase separation in binary mixtures	47
	5. Stability of chemical reactions	49
	6. Limitation of the Gibbs–Duhem theory .	51
CHAPTER V	General Stability Theory of Thermodynamic	60
	Equilibrium	53
	1. Thermodynamic stability and entropy	F 0
	balance equation	53
	2. Thermodynamic stability conditions .	55
	3. Comparison with kinetic stability theory.	58
CHAPTER VI	Thermodynamic and Hydrodynamic Stability	
	Conditions for Non-Equilibrium States .	61
	1. Introduction	61
	2. The definition of stability-Liapounoff	
	functions	62
	3. Stability of dissipative systems	63
	4. Theorems of moderation and the Le Châte-	
	lier–Braun principle	64
	5. Global stability conditions	65
	6. Characteristic properties of $\delta^2 s$ considered	
	as a Liapounoff function	66
	7. Stability involving convective effects .	67
	8. Comparison with kinetic stability theory .	70
	9. Separate thermodynamic and hydrodyna-	
	mic stability conditions	72
CHAPTER VII	Explicit Form of the Stability Conditions for	
	Non-equilibrium States	73
	1. Introduction	73
	2. Thermal stability	74
	3. Helmholtz's theorem on the motion of	
	viscous fluids	78
	4. Chemical reactions	80
	5. Excess balance equations	82
	6. Excess entropy balance equation	83
	7. Explicit stability criterion for dissipative	
	processes	86
	8. Stability and linear thermodynamics	87
	9. Stability and entropy production	88
	10. Stability and equilibrium	89

vi

	Contents	vii	
1	1. Comparison with the entropy balance		
	equation	90	
	 Hydro-thermodynamic stability Explicit form of the separate thermo- dynamic and hydrodynamic stability 	93	
	criteria	94	
CHAPTER VIII	Stability and Fluctuations	96	
	1. Einstein's fluctuation formula	96	
	2. Chemical reactions	97	
	3. Fluctuations of temperature	102	
	4. Regression of fluctuations	103	
	5. Causal description and fluctuations .	104	
CHAPTER IX	The General Evolution Criterion .	106	
	1. Introduction	106	
	2. Evolution criterion for dissipative processes	110	
	3. Evolution criterion and theorem of mini-		
	mum entropy production	112	
	4. Evolution criterion and steady-state condi-		
	tions	113	
	5. Rotation around steady states—Kinetic potential	116	
	6. Behaviour of normal modes around a		
	steady state in dissipative systems .	118	
		121	
		124	
PART II: VARIATIONAL TECHNIQUES AND HYDRODYNAMIC APPLICATIONS			
CHAPTER X	The Local Potential	126	
	1. Conservation equations and variational calculus	126	
	2. Local potential for the heat conduction	127	
	problem	127	
	4. Relation with the Galerkin method	133	
	5. Convergence of the self-consistent method	134	
	6. The time-dependent problem	141	
	7. The iteration method	141	
		TI	

	8. General formulation of the local potential	
		142
	9. General formulation of the local potential	
	for the time-dependent processes	146
	10. The excess local potential	147
	*	149
	12. Comparison with other variational tech-	
		152
	-	
CHAPTER XI	,	154
		154
		154
	5	157
	4. Bénard instability and entropy production	160
	5. Thermodynamic interpretation and dissi-	
	1	163
	a of a later proved record as a second record and the second record as the second record as	165
	7. The principle of exchange of stabilities and	
		166
	8. A variational free minimum principle for	
	the critical Rayleigh number	168
	9. Normal mode approach to the Bénard	
	problem	172
	10. Approximate determination of the critical	
	Rayleigh number by the free minimum	
	method	175
	11. Onset of instability in the two-component	
		178
	12. Stability of a vertical column of fluid .	182
CHAPTER XII	Application of the Local Potential to Stability	
	Problems of Laminar Flow	186
		186
	2. The eigenvalue problem for hydrodynamic	
		188
	3. The excess local potential for hydrodyna-	
	mic stability	190
	4. The excess local potential for stability of	
	flow with a transverse temperature gradient	191
	5. The critical Reynolds number for the plane	
	Poiseuille flow	195

viii

	Contents	ix
	6. The critical Rayleigh number for the Bén- ard problem .	199
	7. The Bénard problem for laminar flow .	200
	8. Influence of a transverse temperature grad-	
		204
CHAPTER XIII	Stability of Finite Amplitude Waves	206
	1. Introduction	206
	2. Sound waves	206
	3. Compression and rarefaction waves. Rie-	
	mann invariants	207
	4. Small disturbances of travelling waves .	214
	5. Instability of the simple compression wave	
	6. Stability of the simple rarefaction wave .	
	7. Reduction of $P[Z]$	219
:	PART III: CHEMICAL PROCESSES	
CHAPTER XIV	Time Order in Chemical Reactions	222
	1. Introduction	222
	2. Thermodynamic threshold for chemical	
	oscillations	223
	3. Sustained oscillations of the Lotka-Volterra	
	type	228
	4. Chemical instabilities	232
	5. Time behaviour beyond the instability .	238
	6. Limit cycle	240
	7. Comparison between the Lotka-Volterra	
	model and limit cycle behaviour	
	8. Fluctuations	243
	8. Fluctuations	
	Zhabotinski reaction	244
CHAPTER XV	Space Order and Dissipation in Chemical	
	Reactions	247

1. Introduction

2. Symmetry breaking instabilities

breaking instabilities

metry breaking instabilities .

3. Thermodynamic interpretation of sym-

4. Thermodynamic threshold for symmetry

.

247

. 248

. 252

. 254

.

	5. Dissipative space structures		255
	6. Examples of a dissipative space st	ructure	
	The Zhabotinski reaction		
	7. Limit cycles and dissipative struct		
	multi-enzymatic reactions		
	muni-enzymane reactions .	• •	200
CHAPTER XVI	Multiple Steady States		272
	1. Introduction		
	2. Single independent variable .		
	U		274
	3. Model with multiple steady states		
	4. Membrane excitability—the model		278
	5. Membrane excitability—steady-stat	-	
	tions		283
CHAPTER XVII	Unity of Physical Laws and Levels of l	Descrin-	
	tion	-	287
	1. Introduction . . .		
	2. Biological structures		
	3. Hierarchy of structures .		290
REFERENCES			293
cana a seo table			2001 S20 Y
GLOSSARY OF	PRINCIPAL SYMBOLS		299
INDEX .			303

x