PREF	ACE	VП
TABLI	E OF CONTENTS	IX
LIST (OF SYMBOLS	хш
Ι.	INTRODUCTION	1
	§ 1. On the theories of irreversible processes	1
	§ 2. Onsager's theory	5
	§ 3. Non-equilibrium thermodynamical functions	9
Π.	THE ONSAGER RECIPROCAL RELATIONS	13
	§ 4*. Method of treatment	13
	§ 5*. Fluctuation theory	13
	§ 6*. Microscopic reversibility	15
	§ 7*. Regression of fluctuations	17
	§ 8*. Derivation of the Onsager relations	18
HI.	SYSTEMS OF A SINGLE COMPONENT	20
	§ 9. Thermomolecular pressure difference and thermo-	
	mechanical effect	20
	§ 10. On a different choice of fluxes and forces	27
	§ 11*. On a third choice of fluxes and forces	30
	§ 12*. Reduction of the phenomenological coefficient matrix	
	to a diagonal form	32
	§ 13*. Shift of the energy zero point	33
	§ 14*. Derivation of the heat of transfer in a Knudsen gas	35
IV.	HEAT CONDUCTION, ELECTRICAL CONDUCTION AND	
	RELAXATION PHENOMENA IN CONTINUOUS SINGLE	
	COMPONENT SYSTEMS	37
	15. Introduction	37
	§ 16. Heat transfer from one system to another	38
	§ 17. One-dimensional heat conduction	39
	§ 18*. Three-dimensional heat conduction	41
	§ 19*. Heat conduction in an external magnetic field	46
	§ 20*. Electrical conduction	47
	§ 21*. Electrical conduction in an external magnetic field .	50
	§ 22. Relaxation phenomena	51

v.	DISCO	ONTINUOUS SYSTEMS WITHOUT CHEMICAL	
	REAC	TIONS	4
	§ 23.	Introduction	4
	§ 24.	The fundamental equations	5
	§ 25.	The entropy balance and the phenomenological equations 5	8
	§ 26.	The energies of transfer \ldots \ldots \ldots \ldots \ldots \ldots	i0
	§ 27.	The stationary state. The thermomolecular pressure	
		effect and the thermal effusion effect 6	1
	§ 28.	Stationary states of first and second order. The mechano-	
		caloric effect \ldots \ldots \ldots \ldots \ldots \ldots	13
	§ 29 * .	Linear transformations of fluxes and forces 6	6
VI.	DISCO	ONTINUOUS SYSTEMS WITH CHEMICAL	
		REACTIONS	3
	§ 30*.	Introduction	3
	§ 31*.	The fundamental equations	'4
	§ 32*.	The entropy balance and the phenomenological equations 7	6
	§ 33*.	The stationary states	9
	§ 34*.	Stationary state of first order	19
	§ 35*.	Stationary state of second order and energies of transfer 8	12
	§ 36*.	The thermomolecular pressure effect 8	15
	§ 37*.	The thermal effusion effect	\$6
	§ 38*.	The chemical effect	\$7
	§ 39*.	The mechano-caloric effect and heats of transfer	;7
	§ 40* .	Energy and heat conduction in the first order stationary	
		state	39
	§ 41*.	Liquid helium II	10
VII.	CONT	TINUOUS SYSTEMS (ORDINARY DIFFUSION,	
	THEF	RMAL DIFFUSION, VISCOSITY, ORDINARY AND	
	THE	RMAL DIFFUSION POTENTIALS, ETC.))4
	§ 42.	Introduction)4
	§ 43.	The fundamental equations)4
	§ 44.	The entropy balance)7
	§ 45.	The phenomenological equations)0
	§ 46.	Ordinary diffusion)1
	§ 47.	Mechanical equilibrium)6
	§ 48*.	Ordinary diffusion, molecular and barycentric 10	18
	§ 49.	Thermal diffusion (Soret effect)	
	§ 50.	Dufour-effect	18
	§ 51.	Viscosity.	2U 20
	§ 52*.	Linear transformations of fluxes and forces	13

x

	§ 53.	Linear transformations in connection with electrical	
		phenomena	7
	§ 54*.	The stationary state in systems with electrical charges	
	-	(thermal diffusion and electrical potential) 13	3
	§ 55*.	The non-stationary state in systems with electrical	
	U	charges (thermal diffusion, ordinary and thermal	
		diffusion potential)	6
			Ť
VIII.	THEF	RMO-ELECTRICITY	ı
	\$ 56.	Introduction 14	1
	\$ 57.	Direct method	2
	\$ 58.	Discussion of the direct method	5
	\$ 59*.	Method using energies of transfer	7
	\$ 60*.	Method using entropies of transfer 15	3
	§ 61.	Thermomagnetic and galvanomagnetic effects	9
	3 0 2 1		v
1X.	CHEM	11STRY	3
	\$ 62.	Introduction	3
	§ 63.	Chemical reactions in closed systems	3
	\$ 64*.	Discussion on the principle of detailed balance	9
	§ 65.	Chemical reactions in open systems	ĩ
	\$ 66*.	Reaction rates and degrees of advancement of chemical	Ĩ
		reactions	4
	\$ 67.	Electrochemistry	î
	\$ 68.	Electrokinetic effects	5
	§ 69.	Interference of a chemical reaction and a relaxation	Č
	3	phenomenon	9
		F	•
x.	THE	STATIONARY STATES	5
	§ 70.	Two descriptions	5
	\$ 71.	States of minimum entropy production	6
	\$ 72.	Extension of Le Chatelier's principle	7
	\$ 73.	Stationary states of various order	9
	\$ 74*.	Stationary state of the zeroth order	1
	\$ 75.	Stationary states of the first and second order 20	1
	\$ 76*.	Examples of Le Chatelier's principle applied to stationary	-
		states of the first order	5
	§ 77*.	Application in biology	6
	•		Ĩ
XI.	FURT	THER DISCUSSION ON FOUNDATIONS 20	8
	§ 78.	Transformation properties of the Onsager relations . 20	8

хI

§ 79 * .	The influence of odd and even variables on the Onsager relations	12
§ 80*.	Generalizations of Onsager's theorem	17
§ 81*.	Non-equilibrium thermodynamical functions 2	20
§ 82*.	Other thermodynamical theories of irreversible	
	phenomena	24
INDEXES .		29
§ 83.	Bibliography	29
§ 84.	References	35
§ 85.	Subject and name index	36