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I. Introduction

The formation of liquid drops on a substrate is a common phenomenon.

What makes itinteresting from a physicist'spoint of view is the fact that

the macroscopic shape of such a drop is intimately related to the three

surface tensions associated with the three interfaces meeting at the

contact line between the drop and the substrate: σgl is the gas-liquid,

σls the liquid-substrate, and σgs the gas-substrate surface tension.

These quantities are given by the surface contribution to the free energy

of the system, which is obtained by a suitable subtraction of the volume

contribution (see, e.g., Griffiths, 1980; Pandit et al, 1982). A lot of

theoretical effort has been put into calculating these surface tensions by

statisticalmechanics on the basis of the intermolecular forces involved in

the problem. It is interesting to see these forces showing up in a

macroscopic way as described in the following.

The shape of a drop on a substrate, the so-called sessile drop, is given

by the minimum of the total free energy of the system under the

constraint of the given volume of the drop. The equilibrium shape may

be obtained by minimizing the variational functional (see, e.g., Avron et

al, 1983):

E =
/
σ(ｎ)dS +

/（Φ(x)
dV (1.1)

where n denotes the outwards directed normal to the surface of the drop
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