1 Wetting Phenomena

S. Dietrich

Sektion Physik der Ludwig-Maximilians-Universität München, Theresienstr. 37, D-8000 München 2, Federal Republic of Germany

	Introduction				2						
II.	General aspects				9						
III.	Models with short-range interactions.				16						
	A. Lattice models				17						
	B. Van der Waals theory				19						
	C. Fluctuation effects				30						
	D. Scaling and simulations				38						
IV.	Models with long-range interactions				41						
	A. Mean-field theory				44						
	A. Mean-field theory . B. Thermodynamic singularities of wetting transitions				62						
	C. Wetting transitions in binary liquid mixtures .				67						
V .	Experiments				93						
	Experiments . A. Wetting of a wall by a one-component system	n close	e to	its							
	sublimation curve		-		93						
	B. Wetting of a wall by a one-component system	n close	e to	its							
	gas-liquid coexistence curve				98						
	C. Wetting of a wall by a one-component system close to its melting										
	curve				102						
	D. Interfacial wetting in binary liquid mixtures .			•	104						
	E. Wetting of a wall by binary liquid mixtures .				107						
VI.					109						
	A. Potts model				109						
	B. Blume-Capel model				116						
	C. Clock models				118						
	D. Specific models for chemisorbed monolayers .				121						
VII.	Surface-induced disorder				123						
	A. One-density Landau theory				123						
	B. Experiments				127						
	C. Surfaces of f.c.c. binary alloys and antiferromagnet	s.			128						
VIII.	Melting				137						
	A. Surface melting.				137						

PHASE TRANSITIONS VOLUME 12 ISBN 0-12-220312-7 Copyright © 1988 Academic Press Limited All rights of reproduction in any form reserved.

S. Dietrich

	B. Grain boundary me	lting											142
137	B. Grain boundary me	ung	•							•	•	•	10000
IX.	Wetting close to bulk c					2		×	•		•		146
	A. Necessity of wetting												146
	B. Critical adsorption				•				•	•	•		151
	C. Wetting by a critical	l pha	se	•				•	•			÷	154
Χ.	Non-standard geometri	es	•								•		155
	A. Capillary condensati	ion					•					•	156
	B. Curved interfaces												164
XI.	Disorder												167
	A. Random substrate												168
	B. Random bulk .												172
XII.	Dynamics												175
	Complex systems .												188
	A. Electric charge and	non-	trivia	al bo	unda	ries							188
	B. Orientational degree												191
	C. Quantum mechanics												193
XIV.	Conclusion												194
Acknowledgements												195	
References and author index								195					
										-			

I. Introduction

The formation of liquid drops on a substrate is a common phenomenon. What makes it interesting from a physicist's point of view is the fact that the macroscopic shape of such a drop is intimately related to the three surface tensions associated with the three interfaces meeting at the contact line between the drop and the substrate: $\sigma_{g,\ell}$ is the gas-liquid, $\sigma_{\ell,s}$ the liquid-substrate, and $\sigma_{g,s}$ the gas-substrate surface tension. These quantities are given by the surface contribution to the free energy of the system, which is obtained by a suitable subtraction of the volume contribution (see, e.g., Griffiths, 1980; Pandit *et al.*, 1982). A lot of theoretical effort has been put into calculating these surface tensions by statistical mechanics on the basis of the intermolecular forces involved in the problem. It is interesting to see these forces showing up in a macroscopic way as described in the following.

The shape of a drop on a substrate, the so-called sessile drop, is given by the minimum of the total free energy of the system under the constraint of the given volume of the drop. The equilibrium shape may be obtained by minimizing the variational functional (see, e.g., Avron *et al.*, 1983):

$$E = \int \bar{\sigma}(\hat{\boldsymbol{n}}) \,\mathrm{d}S + \int \boldsymbol{\phi}(\boldsymbol{x}) \,dV \tag{1.1}$$

where \hat{n} denotes the outwards directed normal to the surface of the drop