Contents

Contributors	• •			• •	• •	•••	• •	• •	3.5	v
General Prefa	ice	•••				• •	• •			vii
Preface to Vo	lumes 5a an	d 5b				• •	••			ix
1. Monte	e Carlo Inves	tigation	ns of P	hase Ti BINDE	ransitio P	ns and (Critical	Pheno	mena	
I. Introdu	ation		1.	DINDE	ĸ					2
I. Introdu	tions of the	Monto	Carlo	Techni	 ique foi	Snin S	· ·	••	•••	6
II. Descrip	tor equation	wionic	Cano	I centi	ique ioi	spin a	stems		1.5	6
A. Mas	ster equation	appro	ach nao ao	 neider	tions		•	• •	••	16
B. Acc	uracy and co	Inverge	nce co	lisidera	mons	 . lowe	•••	• •	• •	21
C. MOI	ite Carlo cal		dition	n conse	hoir og	1 laws	 donco	to nhu	 cical	21
D. Dille	erent bound	ary con	annon	s and t	nen co	respor	luence	to phy	sical	20
SI SI Annalian	tuations	in Cuit				• •		• •	• •	27
III. Applica	tions to Sta		ical Pr	lenome	na			••	•••	27
A. IWO	b- and three-	dimens	ional	Ising m	1 Union	 	 modele		••	37
B. Iwo	b- and three-	annens	nonal o	assica	offooto	inderg i	nouers	••	•••	52
C. Ana	ilysis of finit	e size a		inding	enects	· · ·	 rfa.aaa	interf		55
D. Spa	tial innome	genein	es m	mmmu	e syste	ins (su	maces,	muen	accs,	61
	npurities)	• •	• •	• •	• •	•••	•••	•••	••	20
E. Inc	ritical point	S				•	••••	• •	• •	70
F. Ate	st of M. E. F	isner s	aropi		el	•••	••	• •	• •	70
IV. Applica	tions to Dy		ritical	Pheno	mena	•••	•••	•••	• •	73
A. The	single spin-	llip kin	etic Isi	ng moo	lel			**		74
B. Cor	nparison of	the crit	ical sic	wing d	own w	ith othe	er treati	ments	• •	/6
C. Met	astable state	es and r	nonequ	ulibriu	n relax	ation		•••	• •	82
D. Fur	ther models		• •		2.2		•••	•••	••	90
V. Discuss	ion	• •	•••	• •			••		• •	94
References					• • •	• •	• •	• •		96
Addendum			•••		• •	• •			• •	100
	2. Sys	stems w	ith We	eak Lor	ıg-Ranş	ge Pote	ntials			

P. C. HEMMER and J. L. LEBOWITZ

I. Introduction			• •	• •	 	 108
A. The van der Waals-M	axwell	theory			 	 108
B. Rigorous results					 	 110
C. Metastable states					 	 112
D. Approximate results					 	 112

XIII

II.	Rigorous Derivation of van der W	'aals-M	axwell	Theory	Y			113
	A. Preliminaries							113
	B. Statement of main results	· · ·						116
	C. General bounds							118
	D. Proof of theorem 1					• •		120
	E. Some consequences and extens	ions of	theore	m 1				128
	F. Metastability	÷ •						132
	G. Oscillatory Kac potentials; Ga	ates and	Penro	se theo	rem	· · ·		136
III.	Integral Equation Approach			• •			• •	138
	A. Integral equation for the one-d	imensio	onal co	ntinuur	n gas			139
	B. Integral equations for the lattic	ce gas		• •				143
	C. The van der Waals limit					• •		145
	D. Expansion for small γ							149
	E. The critical region						•••	153
	F. Correlation functions					• •		157
	G. Mixtures				• •	• •	• •	161
	H. External fields		· ·	•••	• •	• •	• •	163
	I. Generalized interactions in one	e and hi	igher di	imensic	ons		•••	166
IV.	Systematic Expansions			• •	• •		• •	170
	A. Graph expansion. Introduction	1	• •	• •	• •			170
	B. Graph expansion. Results	• •		· ·	· ·	••		172
	C. The Coulomb interaction	• •			< ×	· ·	• •	180
	D. Functional integral approach	• • • •		• •	•••		• •	182
	E. The critical region	• •				• •	• •	186
V.	Applications			• •			•••	189
	A. The liquid-gas system			• •	••	••		189
	B. The solid-liquid transition			••		• •	• •	191
	C. Several phase transitions	• •	÷.,	•••	• :	•••	• •	193
	D. Quantum corrections to the lo	cation	of the c	ritical p	point	• •		196
Refe	rences					• •		198

3. Correlation Functions and Their Generating Functionals: General Relations with Applications to the Theory of Fluids G. STELL

205 I. Introduction II. General Development 208 III. The Decomposition of W_n and Some Expressions Associated with it 216 . . 222 IV. Results When the Pair Term is Further Decomposed . . V. The Dyson-equation Form of the Ornstein-Zernike Equation ... 231 . . VI. Use of y-ordering, Γ -ordering; the Core Condition on $g_2(1 \ 2)$ and the 234 Mean-spherical Model; Nodal Ordering VII. Generalization of the Mean-spherical Approximation and The Self-239 consistent Γ -ordered Scheme to *n*-particle Functions 242 . . a 240 References Appendix: Critical Behaviour of Approximations and Models for Which the 246 Ornstein-Zernike Assumption is Satisfied 258 • • References to Appendix

4. Heisenberg Ferromagnet in the Green's Function Approximation R. A. TAHIR-KHELI

I. Introductory Remarks						•••	259
II. The Random Phase Approximation	on						260
A. The spin- $\frac{1}{2}$ case							260
B. The general spin case							265
III. The Callen Decoupling							277
IV. Boson Formalism: Extrapolation	from 1	Low Te	empera	tures			283
V. The Intermediate Region							288
A. The low-temperature region							294
B. The high-temperature region							294
C. Temperature close to T_c .					• •		297
VI. Self-consistent Moment Conservir	me			302			
A. Series expansion schemes	·		- 				308
B. Results in three dimensions							309
C. Near T_c							310
D. Results in one dimension							313
E. Results in two dimensions							316
VII. Random, Dilute Ferromagnet: an	RPA	Cohere	nt Exc	hange A	Approx	ima-	
tion (RPA-CEA) Treatment							317
References							340

5. Thermal Measurements and Critical Phenomena in Liquids A. V. VORONEL

I. Iso	morphy of	Critica	al Pheno	omena						 344
II. Exp	perimental	Worki	ng Con	ditions	with a	Liquid	l –			 347
Α.	Difficultie	s of the	experin	nent				• •	••	 349
B .	Difficultie	s of int	erpretat	ion				• •		 363
III. Results of the Measurement of Thermodynamic Properties										 365
Α.	Pure liqui	ds						•••	·· ·	 365
B .	Dilute sol	ution o	f heptai	ne in et	thane			• •	• •	 370
С.	The syster	n ethar	e/carbo	on diox	ide (liq	uid-vaj	pour cr	itical li	ne)	 375
D.	The liquid	l-liquid	critica	line		••		••		 378
IV. Dis	scussion of	Result	s					••	• •	 380
V. Co	nclusion							• •	1 .1	 389
Reference	es			• •				• •		 390
Appendix	x: Data on	Critica	il Expo	nents				•••		 392
Author I	ndex		· ·							 395
Subject I	ndex		••							 403