Contents

Contributors	• •	••	••	••	••	••	••	••	•••	v
General Preface	••	••	•••	••	••	••	••		••	vii
Preface to Volume	: 3	• •	••	••	••	••	••	••	• •	ix

1. Graph Theory and Embeddings

С. Домв

I. General Introduct	ion	•••	••	••	• •	• •	••	••	1
II. Linear Graphs	••	• •	•••	• •		••	••	• •	3
III. Cluster Integral T									
IV. Lattice Constants	or Em	beddir	ngs	••		••	••	••	57
References									0.0

2. Computer Techniques for Evaluating Lattice Constants

J. L. MARTIN

I. Introduction		••		••		• •	• •	97
II. Nature of the Problem	••			••	••	••		98
III. Canonical Labellings	••	••	••		••	••	• •	100
IV. Computer Representatio	n of a	Netwo	rk		• •	••		103
V. Counting n-clusters on a				••	••	• •	÷.	105
VI. Counting Lattice Consta				ttice		••	• •	108
References						••	••	112

3. Linked Cluster Expansion

MICHAEL WORTIS

I. Intro	ductio	on	••	••			••	• •	• •	••	114
II. The	Linke	d-cluster	Ex	pansion w	ith	Commutin	gν	ariables:	Th	e Ising	
Mod	lel	••		••		••		• •		••	120
III. Furt	her A	pplication	ns a	and Extens	ion	s of the Li	ıke	d-cluster]	Exp	ansion	162
Appendix:	The	Relation	of	the Free	Μ	ultiplicities	to	the Wea	ık	Lattice	
	Cons	tants		••		••		• •		••	176
References	••	••	••	••	•••	••	• •	••	• •	••	178

4. Asymptotic Analysis of Coefficients

D. S. GAUNT and A. J. GUTTMANN

I. In	troduction		••	••		••	••	• •		181
	atio Method				• •		• •	•••	• •	187
III. Pa	dé Approxir	nants				• •	••	• •		
	ethod of N I				• •		••			219
V. Tr	ansformation	ns of Expa	ansion	Variab	les	••	••	••	• •	224
VI. A	oplications o	f Darbouy	's The	eorems		••		••		232
Reference					·· ·	••	• •		••	241

5. Heisenberg Model

G. S. RUSHBROOKE, GEORGE A. BAKER, JR. and P. J. WOOD

I. I	ntrodu	ction				••	• •	• •	•••	• •	246
		on of Hig	gh Tem	peratur	e Exp	ansions			•••		253
III F	Fuller I	Details on	Special	Topic	s			• •		• •	271
IVI	High Te	emperatur	e Series	Expar	nsions			••			294
	Properti	es Derive	d from	High 7	Гетре	rature E	Expans	sions			301
		Basic Me					· .	• •			328
Append	liv II d	Coefficien	ts for F	I(s) with	th Fire	st and S	econd	Neigh	bour I	nter-	
Append		actions. C	Jenerali	sed Sus	scentil	oility Co	efficie	nts for	H(s)		341
							•••••••		(-)		344
Append	mx m.	Coefficien	is for E	(ω)	•••	••	••	••	• •	• •	100,000,0
Append	lix IV. (Coefficien	ts for <i>E</i>	$I(\frac{1}{2})$		• •	••	•••	••	• •	346
Referen			•••		• •	••	••	• •	• •	••	350

6. Ising Model

C. Domb

I. Introduction		••	••	••	• •	••	357
II. Derivation of Series Expansions		•••		••	••	••	375
III. Critical Behaviour	•••			••	••	•••	
IV. Miscellaneous Topics	••		••	••	• •		461
V. Conclusions	••		••	••	••		476
References	• •	••	••	••	•••	••	478

7. D-Vector Model or "Universality Hamiltonian": Properties of Isotropically-Interacting **D**-Dimensional Classical Spins

H. EUGENE STANLEY

I.	Introduction	••	••	••	486
И.	Definition of the Universality Hamiltonian		••	••	487
III.	Generalizations of the Universality Hamiltonian		•••	••	492
IV.	Physical Systems Described by the Universality Hami	Itonian	i i	••	502
	Scaling Functions for Certain Universal Classes		• •	•••	503
VI.	Crossing Over from One Universal Class to Another			••	507

VII.	Formalism for Deriving	Arbit	rary-D	Expre	ssions	for the	Zero-l	Field	
	Gibbs Potential and the	Two-S	Spin Co	rrelatio	on Fun	ction			512
VIII.	Calculation of the Coeffi	cients	in the	Zero 1	Field S	uscepti	bility S	eries	521
IX.	Calculation of the Coeffi	cients	in the Z	ero Fi	ield En	thalpy a	and Spe	ecific	
	Heat Series	••	••	••	••	••	••	••	531
Χ.	Dependence of Expone								
	Hypothesis	• •		••	••	• •	••	••	537
	Possible Dependencies o								543
XII.	Exact Solution of Zero-	Field '	Thermo	dynam	nic Prop	perties	and Co	orre-	
	lation Functions for all								551
XIII.	Exact Solution of Therm	odyna	mic Pro	opertie	s and	Correla	ation F	unc-	
	tions for all d when $D =$: 00	••	••	••	• •	• •		555
XIV.	Dependence of Critical	Point	Expon	ents u	pon D	and d	for d	> 3:	
	Hypercubical Lattices	••	••	••	••	••	••	••	558
XV.	Conclusion and Outlook	••	••	••	••	••	••		559
Refere	ences		••	• •	••	••	••		560

8. X-Y Model

D. D. BETTS

I. Introduction	•• ••	••			÷ •	•••	570
II. X-Y Model	•• ••	••	•••	••	••		572
III. Planar Models, Planar Sys	tems and the	Univer	sality I	Hypoth	esis	• •	579
IV. Zero Field Partition Funct		• •		••	••	•••	584
V. Susceptibilities and Magne	tization Fluct	uations	5	••	••	• ••	596
VI. Expansions for Fluctuation	ns and Suscep	tibilitie	s			••	600
VII. Critical Properties from A				¥ 5.	• •	•••	615
VIII. Critical Properties from Sc			•••	••	•••	•••	625
IX. Dynamical Properties of th	ne X-Y Mode	1		••		••	630
X. Two-Dimensional Planar N	Models	••	••			•••	635
XI. Comparison with Experim		••	•••	••	• •	•••	643
XII. Discussions, Conclusions a	and Outlook	• •	••	••	••	••	647
References		••		• •	••	••	649

9. Ferroelectric Models

JOHN F. NAGLE

I. Weak Grap										653
II. Weak Grap										656
III. Applications of the Weak Graph Expansion to Hydrogen-bonded										
Models	••	• •	••	• •	••	••	••	••	••	661
References	•••	••	••	••	••	••	••	••	••	665
Author Index	••	••		••		••	••	••		667
Subject Index	•••	••	••	• •	• •	••	• •	••	•••	677