CONTENTS

	PREFACE	vi
Chapter 1.	Introduction	1
1.1.	General Remarks	1
1.2.	The Importance of Heat Transfer	2
1.3.	Fundamental Concepts and the Basic Modes of Heat Transfer	2
1.4.	The Fundamental Laws of Conduction	4
1.5.	The Fundamental Laws of Convection	g
1.6.	The Fundamental Laws of Radiation	13
1.7.	Dimensions and Units	13
1.8.	The Dimensions and Units of Conductivity, Conductance, and Diffusivity	16
Chapter 2.	Material Properties of Importance in Heat Transfer	18
2.1.	Introductory Remarks	18
2.2.	Thermal Conductivity of Homogeneous Materials	18
2.3.	Apparent Thermal Conductivity of Nonhomogeneous Materials	24
2.4.	Specific Heat	25
2.5.	Thermal Diffusivity	28
2.6.	The Coefficient of Thermal Expansion	28
2.7.	Fluid Viscosity	30
2.8.	The Prandtl Number	34
2.9.	Closure	35
Chapter 3.	Steady State Heat Conduction in One Dimension	37
3.1.	The Meaning of "One-Dimensional" Conduction	37
3.2.	The Plane Wall with Specified Boundary Temperatures	38
3.3.	The Multilayer Wall with Specified Boundary Temperatures	40
3.4.	The Single-Layer Cylinder with Specified Boundary Temperatures	42
3.5.	The Multilayer Cylinder with Specified Boundary Temperatures	44
3.6.	The Effect of Variable Thermal Conductivity	45
3.7.	Boundaries Surrounded by Fluids of Specified Temperatures	47
3.8.	The Critical Thickness of Pipe Insulation	50
3.9.	The Over-All Heat Transfer Coefficient	52
Chapter 4.	Extended Surfaces	57
4.1.	Introductory Remarks	57
4.2.	The Straight Fin of Uniform Thickness and the Spine of Uniform Cross Section—Finite Length	5 9

x Contents

4.3. 4.4.	The Case of Very Long, Straight Fins Measurement of Thermal Conductivity by Use of Rods	66
	Heated on One End	67
4.5.	Extended Surfaces of Nonuniform Cross Section— General Considerations	70
4.6.	The Annular Fin of Uniform Thickness	72
4.0. 4.7.	The Straight Fin of Triangular Profile	78
		81
4.8.	Other Shapes of Nonuniform Cross Section	4.500
4.9. 4.10.	The Range of Application of the Straight Fin of Uniform Thickness Optimum Dimensions for Straight Fins of a Given Amount of	81 85
4.11.	Material Fin Effectiveness	90
Chapter 5.	Heat Conduction in Two or More Independent Variables	97
5.1.	Steady State Conduction in Rectangular Plates	97
5.2.	Steady Conduction in a Circular Cylinder of Finite Length	103
5.3.	Nonsteady Conduction in One Space Dimension	107
5.4.	Transient Conduction in the Infinite Slab	108
5.5.	Transient Radial Conduction in a Long Solid Cylinder	121
5.6.	Transient Conduction in More Than One Dimension	126
5.7.	Very Thick Wall Subjected to Periodic Surface Temperatures	134
5.7.	very linex wan bubjected to renounc burrace reinperacures	101
Chapter 6.	The Fundamental Principles of Viscous Fluid Motion and Boundary Layer Motion	144
6.1.	The Fluid Mechanical Aspects of Convection	144
6.2.	Continuity Equation—The Conservation of Mass	146
6.3.	Viscous Resistance for Plane Laminar Fluid Motion	148
6.4.	The Substantial Derivative	152
6.5.	The Equation of Motion	154
6.6.	The Energy Equation—First Law of Thermodynamics	157
6.7.	The Reynolds Number and Its Significance	160
6.8.	Turbulent Flow	164
6.9.	The Concept of the Boundary Layer	169
6.10.	The Equation of Motion and Energy Equation of the Laminar	
	Boundary Layer	170
6.11.	The Integral Equations of the Laminar Boundary Layer	175
6.12.	Turbulent Boundary Layers	180
Chapter 7.	Examples of the Application of Boundary Layer Theory to Problems of Forced Convection and an Introduction to Dimensional Analysis	182
7.1.	Solution of Laminar Forced Convection on a Flat Plate by Use	
****	of the Differential Equations of Motion and Energy of the Boundary Layer	183
7.2.	Solution of Laminar Flat Plate Forced Convection by Use of	
	the Integral Momentum and Energy Equations of the	
	Boundary Layer	195
7.3.	Reynolds' Analogy for Laminar Flow	203
7.4.	Turbulent Boundary Layers on Flat Surfaces and the Transition	
,	from Laminar Flow	206

Contents xi

7.5.	Heat Transfer in the Turbulent Boundary Layer on a Flat Plate—	
	Prandtl's Modification of Reynolds' Analogy	212
7.6.	Viscous Flow in Pipes or Tubes—Fully Developed Flow	217
7.7.	Fully Developed Velocity Distributions and Pressure Losses	219
7.8.	Heat Transfer in Fully Developed Pipe Flow	223
7.9.	Dimensional Analysis	227
7.10.	Buckingham's Pi Theorem	234
7.11.	Dimensional Analysis Applied to Forced Convection	237
Chapter 8.	Working Formulas and Dimensionless Correlations for	
•	Forced Convection	242
8.1.	Forced Convection Past Plane Surfaces	244
8.2.	Forced Convection inside Cylindrical Pipes or Tubes	247
8.3.	Forced Convection in Annular Spaces	252
8.4.	Forced Convection inside Cylindrical Tubes for Fluids with	
	Very Low Prandtl Numbers—Liquid Metals	252
8.5.	Forced Convection in Flow Normal to Single Tubes and Tube Banks	256
8.6.	Forced Convection in the High Velocity Flow of a Compressible Fluid	257
Chapter 9.	Heat Transfer by Free Convection	266
9.1.	Governing Equations of Free Convection	266
9.2.	The Application of Dimensional Analysis to Free Convection	269
9.3.	Working Formulas and Dimensionless Correlations of Free Convection	271
9.4.	Free Convection around Horizontal Cylinders	272
9.5.	Free Convection around Vertical Plates and Cylinders	274
9.6.	Free Convection around Horizontal Flat Surfaces	276
9.7.	Simplified Free Convection Relations for Air	276
Chapter 10.	Heat Transfer in Condensing and Boiling	280
10.1.	General Remarks Concerning Condensation	280
10.2.	Film Condensation on Vertical Plane Surfaces and Vertical Tubes	281
10.3.	Condensation inside Tubes	289
10.4.	Film Condensation on the Outside of Horizontal Cylinders	290
10.5.	Heat Transfer during the Boiling of a Liquid	292
10.6.	Working Formulas for Heat Transfer with Boiling	296
Chapter 11.	Heat Transfer by Radiation	300
11.1.	Absorptivity, Reflectivity, Transmissivity	301
11.2.	Emittance, Emissivity	302
11.3.	Radiosity. Irradiation	306
11.4.	Kirchhoff's Law of Radiation	306
11.5.	Intensity of Radiation, Lambert's Law of Diffuse Radiation	308
11.6.	Radiation Exchange between Parallel Infinite Planes	310
11.7.	Radiant Exchange between Finite Black Surfaces.	
	The Shape Factor	314
11.8.	Some Special Properties of the Shape Factor	317
11.9.	The Shape Factor for Finite, Parallel, Opposed Rectangles	319
11.10.	The Shape Factor for Perpendicular Rectangles Having	
	a Common Edge	291

xii Contents

11.11.	Complex Configurations Derivable from Perpendicular Rectangles with a Common Edge	323
11.12.	General Relations for Perpendicular and Parallel Rectangles	327
11.12.	Radiation Exchange between Black Surfaces Connected by	321
11.10.	Nonconducting, Reradiating Walls	328
11.14.	Gray Surfaces Connected by Nonconducting, Reradiating Walls	334
11.14.	One Gray Surface Completely Enclosing a Second Gray Surface	336
11.15.	One Gray Surface Completely Enclosing a Second Gray Surface	990
$Chapter\ 12.$	Heat Transfer by Combined Conduction and Convection	341
12.1.	The Over-All Heat Transfer Coefficient	342
12.2.	Examples of Trial and Error Solutions of Combined Conduction	
	and Convection Cases	343
12.3.	Heat Exchangers—The Various Types and Some of Their General	
	Characteristics	350
12.4.	Heat Exchanger Mean Temperature Differences	357
12.5.	Calculation of the Performance of a Given Heat Exchanger	367
12.6.	Heat Exchanger Effectiveness and the Number of Transfer Units	373
12.7.	Design or Selection of Heat Exchangers for Specific	
	Performance Characteristics	37 9
Chapter 13.	Additional Cases of Combined Heat Transfer Including Radiation	387
13.1.	Simultaneous Convective and Radiant Heat Losses from	
	Completely Enclosed Bodies	387
13.2.	Combined Convection and Radiation in Air Spaces	390
13.3.	Thermocouple Lead Error in Surface Temperature Measurements	391
13.4.	Thermometer Well Errors Due to Conduction	394
13.5.	Radiation Effects in the Measurement of Gas Temperatures	395
	Appendix	
Α.	Tables and Charts of Properties of Substances	401
В.	MISCELLANEOUS TABLES	430
C.	A SHORT SUMMARY OF BESSEL FUNCTIONS WITH BRIEF TABLES	433
D.	A Short Summary of Orthogonal Functions Used in Chapter 5	441
	Index	449