CONTENTS

	PREFA	CE	vii
I.	BASIC	PRINCIPLES OF THE KINETIC THEORY OF GASES	
	1.	Introduction	1
	2.	Probability	3
	3.	Phase space and Liouville's theorem	9
	4.	Hard spheres and rigid walls. Mean free path	13
	5.	Scattering of a volume element in phase space	20
	6.	Time averages, ergodic hypothesis and equilibrium states	25
		Appendix	36
		References	39
II.	THE E	OLTZMANN EQUATION	
	1.	The problem of nonequilibrium states	40
	2.	Equations for the many particle distribution functions for a gas of rigid spheres	44
	3.	The Boltzmann equation for rigid spheres	52
	4.	Generalizations	57
	5.	Details of the collision term	67
	6.	Elementary properties of the collision operator. Collision invariants	72
	7.	Solution of the equation $Q(f, f) = 0$	78
	8.	Connection between the microscopic description and the macroscopic description of gas dynamics	79
	9.	Non-cutoff potentials and grazing collisions. Fokker-Planck equation	86
	10.	Model equations	95
		Appendix	98
		References	102
III.	GAS-SI	URFACE INTERACTION AND THE H-THEOREM	
	1.	Boundary conditions and the gas-surface interaction	104
	2.	Computation of scattering kernels	108

X CONTENTS

	3.	Reciprocity	111
	4.	A remarkable inequality	115
	5.	Maxwell's boundary conditions. Accommodation coefficients	118
	6.	Mathematical models for gas-surface interaction	122
	7.	Physical models for gas-surface interaction	130
	8.	Scattering of molecular beams	134
	9.	The H-theorem. Irreversibility	137
	10.	Equilibrium states and Maxwellian distributions	142
		Appendix	149
		References	156
IV.	LINEA	R TRANSPORT	
	1.	The linearized collision operator	158
	2.	The linearized Boltzmann equation	161
	3.	The linear Boltzmann equation. Neutron transport and radiative transfer	165
	4.	Uniqueness of the solution for initial and boundary value problems	172
	5.	Further investigation of the linearized collision term	174
	6.	The decay to equilibrium and the spectrum of the collision operator	180
	7.	Steady one-dimensional problems. Transport coefficients	189
	8.	The general case	200
	9.	Linearized kinetic models	205
	10.	The variational principle	212
	11.	Green's function	215
	12.	The integral equation approach	222
		References	229
v.	SMAL	L AND LARGE MEAN FREE PATHS	
	1.	The Knudsen number	232
	2.	The Hilbert expansion	234
	3.	The Chapman-Enskog expansion	239
	4.	Criticism of the Chapman-Enskog method	245
	5.	Initial, boundary and shock layers	248
	6.	Further remarks on the Chapman-Enskog method and the computation of transport coefficients	260
	7.	Free molecule flow past a convex body	262

		CONTENTS	xi
	8.	Free molecule flow in presence of nonconvex boundaries	271
	9.	Nearly free-molecule flows	278
		References	283
ī.	ANAL	YTICAL SOLUTIONS OF MODELS	
	1.	The method of elementary solutions	286
	2.	Splitting of a one-dimensional model equation	286
	3.	Elementary solutions of the simplest transport equation	288
	4.	Application of the general method to the Kramers and Milne problems	294
	5.	Application to the flow between parallel plates and the critical problem of a slab	299
	6.	Unsteady solutions of kinetic models with constant collision frequency	306
	7.	Analytical solutions of specific problems	310
	8.	More general models	315
	9.	Some special cases	319
	10.	Unsteady solutions of kinetic models with velocity dependent collision frequency	322
	11.	Analytic continuation	330
	12.	Sound propagation in monatomic gases	334
	13.	Two-dimensional and three-dimensional problems. Flow past solid bodies	338
	14.	Fluctuations and light scattering	344
		Appendix	345
		References	348
II.	THE 3	TRANSITION REGIME	
	1.	Introduction	35
	2.	Moment and discrete ordinate methods	35
	3.	The variational method	35:
	4.	Monte Carlo methods	359
	5.	Problems of flow and heat transfer in regions bounded by planes or cylinders	361
	6.	Shock-wave structure	369
	7.	External flows	377
	8	Expansion of a gas into a vacuum	380

385

References

		٠
v	1	1
х		1

CONTENTS

10070000000					
VIII.	THEOREMS ON	THE SOLUTIONS	OF THE	ROI TZMANN	FOUATION

1.	Introduction	392	
2.	The space homogeneous case	392	
3.	Mollified and other modified versions of the Boltzmann equation	398	
4.	Nonstandard analysis approach to the Boltzmann equation	401	
5.	Local existence and validity of the Boltzmann equation	405	
6.	Global existence near equilibrium	407	
7.	Perturbations of vacuum	412	
8.	Homoenergetic solutions	414	
9.	Boundary value problems. The linearized and weakly nonlinear cases	417	
10.	Nonlinear boundary value problems	422	
11.	Concluding remarks	425	
	References	426	
API	APPENDIX		
	References	439	
ΑU	AUTHOR INDEX		
SUI	SUBJECT INDEX		