CONTENTS

Contributors to Volume 1 Articles Planned for Future Volumes Preface	v vii ix	
CHAPTER-1: OXYGEN HOLE MECHANISM OF SUPERCONDUCTIVITY IN CUPRATES AND OTHER METAL OX C.N.R. Rao, Indian Institute of Science, Bangalore, India	KIDES	
Introduction Experimental Results on Cuprates Pairing of Oxygen Holes Location of Oxygen Holes Oxygen Holes in Other Oxides References	1 1 6 7 8 9	
CHAPTER-2: ELECTRONICALLY DRIVEN INSTABILITIES IN T _C SUPERCONDUCTORS AND RELATED MATERIALS Kazushige Machida, Kyoto University, Kyoto, Japan	HIGH	
Overview Heavy Fermion Superconductors Copperless Cubic Oxides Cu-Based Oxide Superconductors References	11 12 22 34 38	
CHAPTER-3: THE BCS PAIRING AND POSSIBLE MECHANISMS HIGH TC SUPERCONDUCTIVITY Sudhanshu S. Jha, Tata Institute of Fundamental Research, Bombay, India		
Introduction The Generalized BCS Pairing Theory The BCS Gap Equation for Layered Crystals Some Properties of New High T _c Superconductors Electrodynamic Response with Anisotropic Gap Possible Pairing Mechanisms and Conclusion References	41 44 52 55 56 58 62	
CHAPTER-4: BOSON EXCHANGE MECHANISMS, BOUNDS AND ASYMPTOTIC LIMITS J. P. Carbotte, McMaster University, Hamilton, Canada and F. Marsiglio, University of California at San Diego, La Jolla, U.S.A.		
Introduction Formalism Conventional Superconductors Very Strong Coupling Regime Functional Derivatives Optimum Spectra Asymptotic Limits Specific to the Oxides Combined Phonon-Exciton Mechanism Conclusions xi	64 66 69 73 79 83 89 94 103 108	

5-A STRONG COUPLING APPROACH TO HIGH TEMPERATURE SUPERCONDUCTORS CHAPTER

Josef Rammer, University of Bayreuth, Bayreuth, West Germany

Introduction	116
Elements of Strong Coupling Theory	118
The Gorkov-Eilenberger Equation for Inhomogeneous Superconductors 122	
Studies of Phonon Properties	123
Phonon versus Non-Phonon Mechanisms	127
Conclusion	133
References	134

ION BEAM MODIFICATION AND ANALYSIS OF THIN CHAPTER-6: YBa₂Cu₃O₇ FILMS

O. Meyer, Kernforschungszentrum, Karlsruhe, West Germany.

Introduction	139
Thin Film Synthesis and Analysis	141
Effects of Ion Irradiation	147
Applications	160
Conclusions	162
References	163

CHAPTER-7: SUPERCONDUCTING PROPERTIES ASSOCIATED WITH SHORT COHERENCE LENGTH - FLUCTUATION EFFECT AND FLUX CREEP PHENOMENON IN HTSC Yasuhiro Iye, the University of Tokyo, Tokyo, Japan

Introduction	166
Fluctuation Effects	166
Flux Creep Phenomenon	176
Concluding Remarks	180
References	180

CHAPTER-8: BASIC THIN FILM PROCESSING FOR HIGH Tc **SUPERCONDUCTORS**

K. Wasa, H. Adachi, Y. Ichikawa, K. Setsune and K. Hirochi, Matsushita Electric Industrial Co. Ltd., Moriguchi, Japan.

Introduction	182
Thin Film Processing	182
Deposition and Superconducting Properties	189
Summaries and Discussions	202
Conclusions	208
References	208

CHAPTER-9: THREE TERMINAL HIGH T_c SUPERCONDUCTING DEVICES WITH LARGE CURRENT GAIN

Takeshi Kobayashi and Uki Kabasawa, Osaka University, Toyonaka, Japan.

Introduction	211
Device Structure	212
Superconductor Thin Film Preparation	214
Device Fabrication	216
Three Terminal Device Characteristics	218
Possible Interpretation of Current Modulation Mechanism	223
References	228

CHAPTER-10: TWINS IN HIGH T_c YBa₂Cu₃O₇₋₈ SUPERCONDUCTORS

C. J. Jou and J. Washburn, Lawrence Berkeley Laboratory Berkeley, U.S.A.

Introduction	229
Formation of Coherent Twins	230
Models and Simulations of Oxygen Depleted Twin Boundaries	235
Effect of Oxygen Depleted Twin Boundaries on	
Superconducting Properties	237
Conclusion	241
References	242

CHAPTER-11: THE ROLE OF MOTT-INSULATION, NON-STOICHIOMETRY AND ALTERED VALENCE IN HIGH T_c SUPERCONDUCTIVITY

G. J. Hyland, University of Warwick, Coventry, U. K.

Introduction	244
Basic Properties of Mott-Insulators	246
Application to the Cuprate Superconductors	251
Resume and Outlook	263
References	265

CHAPTER-12: SOUND VELOCITY AND ELASTIC CONSTANTS IN OXIDE SUPERCONDUCTORS

R. Srinivasan, Indian Institute of Technology, Madras, India

Introduction	267
Doped Lanthanum Copper Compounds	270
Compounds Belonging to the Yttrium Barium Copper Oxide Family	273
References	281

CHAPTER-13: X-RAY PHOTOELECTRON SPECTROSCOPIC STUDIES OF HIGH T_c OXIDE SUPERCONDUCTORS

B. D. Padalia and P. K. Mehta, Indian Institute of Technology, Bombay, India

Introduction	283
Salient Features of XPS	285
Experimental	289
X-Ray Photoelectron Spectra	293
Conclusions	314

References

CHAPTER-14: SYNTHESIS OF HIGH TC OXIDE SUPERCONDUCTORS IN Y-, Bi- AND T1- SYSTEMS: THE ROLE OF CHEMISTRY R. M. Iyer and J. V. Yakhmi, Bhabha Atomic Research Center, Bombay, India.

Introduction	320
Processing Methods for Bulk Materials	321
Chemical Reactivity Considerations	324
Oxygen Stoichiometry in YBa2Cu307-x	325
Processing for Higher Jc	327
Ion-Sorption Behaviour	328
Fluorine-Incorporation in YBa2Cu307-x	329
Matrix Reaction Method	329
Problems of Current Interest	336
References	339

CHAPTER-15: SUBSTITUTIONAL STUDIES ON HIGH TEMPERATURE SUPERCONDUCTORS

A. V. Narlikar, C. V. Narasimha Rao and S. K. Agarwal, National Physical Laboratory, New Delhi, India.

High T _c Systems – Relevance of Substitutions	341
General Considerations of Substitutions	344
Lanthanum Based Cuprates	346
Yttrium Based Cuprates	352
Bismuth and Thallium Based Cuprates	366
Non-Copper System	368
Concluding Comments	369
References	369

SUBJECT INDEX

377