

パリディ 別冊シリーズNo.6 **高温超伝導**[2] ―― 発現機構の解明をめざして

●はじめに 福山秀敏―――――	3
●物質について +含好紀	6
●物性について 佐藤正俊――――――――――――――――――――――――――――――――――――	12
●理論について 立木 昌	16
高温超伝導の新展開	
●陽電子消滅法で探る高温超伝導のバンド構造 谷川庄一郎(パリティ Vol.03 No.07)	— 24
●Bi系, TI系超伝導体 アニル・クラナ著 小形正男 訳————————————————————————————————————	— 29
●高温超伝導で古い問題がリバイバル アニル・クラナ著 長谷川泰正 訳 —— (Physica Today Vol.41 No.2)	—3 4
●高温超伝導中 ⁽⁷ OのNMR 北岡良雄————————————————————————————————————	—4 2
●Ba _{!-X} K _X BiO ₃ 系の超伝導 佐藤正俊	— 4 6
●高温超伝導体の常伝導相の電気抵抗の異方性 家 泰弘 (パリティ Vol.03 No 08)	48
●超伝導転移温度とプラズマ周波数 田島節子 (パリティ Vol.03 No.08)	— <i>5</i> 2
●角度分解光電子分光法と超伝導(I) Bi系超伝導体 高橋 隆——(パリティ Volc3 No.09)	 56
●Bi-Sr-Ca-Cu-Oのトンネルスペクトル 内野倉國光 (パリティ Vol 03 No 09)	<u> 61 </u>
●La-Cu-O系で90Kの超伝導相 青木売三 (パリティ Vol 03 No 09)	— 65
●µSRによる高温超伝導の研究 植村泰朋 (パリティ Vol 03 No 10)	68
●新しいスピン液体LaSrCuO 速藤康夫 (パリティ Vol.03 No.10)	—- 7 2
●角度分解光電子分光法と超伝導(I) YBa₂Cu₃O _{7-x} 句坂康男——— (パリティ Vol 03 No 10)	— 74
●ホールはどこに? 小谷章雄 (パリティ Vol.03 No.11)	-80

●新TIBa ₂ Ca ₃ Cu ₄ O ₁₁ (1234)系超伝導体 伊原英雄————————————————————————————————————	-91
● YBa₂ Cu₃ O ₇₋₈ 単結晶薄膜の物性 坂東尚周 — — — — — — — (パリティ Vol.03 No.12)	-94
● ラマン散乱と高温超伝導 水貝俊治	-9 7
● 高温超伝導の理論的モデル 金森順次郎	104
●Bi(Pb)-Sr-Ca-Cu-O超伝導体110K相の単相化 川合知二―――― (パリティ Vol.04 No.01)	107
●新しい超伝導体Nd-Ce-Sr-Cu-O系とその結晶構造 秋光 純―――― (パリティ Vol.04 No.01)	113
●酸化物超伝導体のトンネル効果 浴野稔―・秋光 純――――――――――――――――――――――――――――――――――――	118
● (La _{1-x} Sr _x) _z CuO₄薄膜の光吸収 鈴木 実	-123
●La系の新しい相転移 佐藤正俊・熊谷健――――――――――――――――――――――――――――――――――――	-127
●高温超伝導発現のメカニズム 今田正俊――――――――――――――――――――――――――――――――――――	-132
●LaSrCuO系の高濃度ホールドーピング 魚田雅彦・内田慎—(パリティ Vol.04 No.03)	- 138
●CuO₂面の電子ドーピングによる超伝導 十倉好紀	-144
●電子をドープするには 近藤 淳	-148
●YBa₂ Cu₃ O ₇₋₅ における伝導正孔ー ¹⁷ O NMR 滝川 仁────────	- 151
●転移温度領域の磁場による広がり 神戸振作・北沢宏ー	-156

●核四重樫共鳴で眺めたCuスピンのゆらぎ 今井 卓・安岡弘志-----159

●Bi₂ Sr₂ Ca_{1-x} Y_x Cu₂ O_{8+y}の特徴的物性 為ヶ井 強-(パリティ Vol.03 No.11)

(a)~(c)は1気圧の酸素流下で、温度を変えた時 のYBCO結晶の変化。(a)は160℃、(b)は690℃ に加熱したもの、(c)は(b)を200°Cに冷却したもの。 $(d)\sim (g)$ はYBCO結晶のドメイン構造の変化。(d)は加熱前、(e)はそれを拡大したもの、(f)は加熱後、 (g)はそれを拡大したもの

YBCO結晶は約600°cで斜方晶→正方晶転移を生 ずるが、この転移は強弾性的であるので、加熱・冷 却によりドメイン構造は局所的なひずみの影響をうけ て変化する。写真を詳細に見ると、加熱前後でパター ンが変わっていることがわかる。

(パリティ Vol.04 No.05)

(/(I)7-4 Vol.04 No.05)

(写真は無機材質研究所・沢田勉氏らの御好意による)