Contents

Part I Fundamentals

Classical Dynamics of Josephson Tunnelling and Its Quantum Limitations

H. Lübbig

1.	Introduction	2
2.	Basic Properties of Josephson Junctions	5
2.1	The DC and the AC Josephson Effect	5
2.2	Circuit Implications	7
2.3	Damping Equivalent	8
3.	Classical Dynamics of the Quantum Phase Shift in	
	Pair- and Quasiparticle Tunnel Junctions	11
3.1	Quantum Phase Self-Coupling	13
3.2	Tunnel Junction Admittance	13
3.3	Special Cases	14
4.	Macroscopic Quantum Phenomena Based on Josephson	
	Tunnel Dynamics	17
4.1	Macroscopic Quantum Tunnelling	18
4.2	Quantum Charge Oscillations	19
4.2.1	Bloch Oscillations	19
4.2.2	Single-Electron Tunnelling (SET)	20

Modelling of Resistive Networks for Dispersive

Tunnel Processes G. Brunk

0.		
1.	Introduction	2
2.	Classification of Different Essential Processes	2
3.	The Macroscopic Dynamical Structure of Superconductive	
	Tunnel Diodes	- 2
4.	The Mapping of the Dynamical Structure on Technical	
	Equivalent Systems	3
4.1	Mechanical Ánalogies	3
4.2	Electrical Equivalent Circuits	3
4.2.	1 Circuit Model with Infinite Degree of Freedom	3
4.2.	2 Circuit Model with Finite Degree of Freedom	3
5.	Conclusion and Outlook	4

Electromagnetic Properties of Superconductors Exact Solution of the Mattis-Bardeen Equations for

Exact Solution of the Mattis-Bardeen Equations for Bulk Material and Thin Films *R. Pöpel*

	•	
1.	Introduction	44
2.	Bulk Superconductors	45
2.1	Theories of the Normal and Anomalous Skin Effect	45
2.2	Solution of the Mattis-Bardeen Kernel K(q)	49
2.3	Extreme Anomalous Skin Effect	53
2.4	Surface Impedance	54
3.	Applications to Bulk Superconductors	54
3.1	Other Calculations	54
3.2	Microwave Region	56
3.3	Far Infrared Region	60
4.	Thin Films	66
4.1	Theoretical Treatment	66
4.2	Complex Conductivity	70
5.	Applications to Thin Films	71
5.1	Transition to Bulk Superconductors	71
5.2	Transmission Spectra	73
6.	Conclusion	76

Part II Sensitive Detectors

High-T_C Josephson Contacts and Devices

H. 1	Rogalla, C. Heiden	
1.	Introduction	80
2.	Technological Aspects	81
2.1	Thin Film Preparation	81
2.2	Microstructuring Procedures	87
3.	Tunnel Contacts	91
4.	Microbridges	95
4.1	Theoretical Model	96
4.2	Experimental Results	105
5.	High-T _c SQUIDs	107
5.1	Single Layer Nb3Ge-DC-SQUIDs	107
5.2	Nb3Ge Multi-Layer Technique	111
5.3	Nb3Ge Multi-Layer DC-SQUID	115
6.	High Frequency Applications	117
6.1	Microwave Driven Switching Device	118
6.2	Nanobridges as Relaxation Oscillators	120
6.3	FM-Read-Out Scheme for DC-SQUIDs	122
7.	Emerging Developments: SQUIDs at 77 Kelvin	123

Biomagnetic Sensors

H. Koch

1.	Introduction	****	128
2.	The Biomagnetic Method	*******	130

3.	Current Dipole Model	133
4.	Detection Coil Configurations	136
4.1	Wire-Wound Flux Transformers	136
4.2	Thin Film Flux Transformers	140
4.3	Multisensor Configurations	144
5.	Sensor Periphery	144
5.1	Dewars	144
5.2	Shielded Rooms	1 46
6.	Possible Implementation of High-T _c Superconductors in	
	Biomagnetic Instrumentation	147
7.	Conclusion	148

Josephson Junction as a Spectral Detector

J.H.	Hinken	
1.	Introduction	151
2.	Current and Voltage Sensitivity	152
2.1	Autonomous Junction	152
2.2	Impressed RF Current	154
2.3	Oscillation Linewidth	158
2.4	External Circuit	162
3.	Noise Equivalent Power	165
4.	Spectrometer with Wide Frequency Span	167
4.1	Theory	167
4.2	Experiments	169
5.	Outlook	173

Superconducting Tunnel Junctions for Radioastronomical Receivers K. H. Gundlach

K. I	1. Gunalach	
1.	Millimeter and Submillimeter Radiation from the	
	Interstellar Medium	175
2.	Description of Receivers for Radio Astronomy	177
2.1	Direct Detectors	177
2.2	Heterodyne Detection	178
З.	The Quasiparticle and the Josephson Current in	
	SIS Tunnel Junction	179
4.	Fabrication and Properties of SIS and SIN Junctions	184
4.1	Lead Alloy Junctions	184
4.2	Refractory Metal Junctions	186
5.	Quasiparticle Direct Detectors	188
5.1	Responsivity and Noise Equivalent Power	188
5.2	Frequency Limitation	190
5.3	Possible Gain Mechanism	191
6.	Classical Mixing with the Schottky Diode	191
7.	Quantum Mixing with the SIS Junction	192
7.1	Theoretical and Experimental Results of Quasiparticle Mixing	192
7.2	Realization of Quasiparticle Heterodyne Receivers	~ -
	for Radioastronomical Observations	194

7.3	Upper Frequency Limit	196
8.	Mixing with SIN Junctions	198
9.	Outlook for Quasiparticle Tunnel Junctions of the	
	High-T _c Superconductor	200

Low-Temperature Scanning Electron Microscopy of Superconducting Thin Films and Tunnel Junctions R. P. Huebener

л.	r. 114606661	
1.	Introduction	205
2.	Electron Beam as a Local Heat Source	206
З.	Spatial Structure in Superconducting Thin Films	208
4.	Inhomogeneous Quasiparticle Tunneling	211
5.	Inhomogeneous Pair Tunneling	212
б.	Vortex States and Trapped Flux Quanta in Tunnel Junctions	215
7.	Cryoelectronic Circuits and Tunnel Junction Arrays	219
8.	Applications to Thin Films of High-Tc-Superconductors	220

Part III Precision Metrology

Josephson Series Array Potentiometer

J.	Niemeyer

1.	Introduction	228
2.	Circuit Design	232
3.	Fabrication of the Circuits	240
4.	Measuring System and Precision of the Standard Instrument	243
5.	Design of an Integrated Potentiometer	247
6.	The Use of High Critical Temperature Superconductors	251

Cryogenic Current Comparator Metrology P. Gutmann, H. Bachmair

Sutmann, fi. Dachmair	
Introduction	255
Theory and Operation of Cryogenic Current Comparators	256
Basic Principle	256
Practical Realizations of Cryogenic Current Comparators	257
Ratio Error of a Cryogenic Current Comparator	258
Optimization of the Signal-To-Noise Ratio	260
Resistance Ratio Measurements	261
Basic Principle	261
Practical Realizations	262
Deflection Method	262
	265
Measurement of Quantized Hall Resistances and	
Establishment of a Resistance Scale	266
Future Developments	267
	Introduction Theory and Operation of Cryogenic Current Comparators Basic Principle Practical Realizations of Cryogenic Current Comparators Ratio Error of a Cryogenic Current Comparator Optimization of the Signal-To-Noise Ratio Resistance Ratio Measurements Basic Principle Practical Realizations Deflection Method Balance Method Measurement of Quantized Hall Resistances and Establishment of a Resistance Scale

Fast SQUID Pseudo Random Generators

~

М.	Albrecht, W. Kessel	
1.	Introduction	269
2.	Principles of the Generation of Digital Random Noise	269
2.1	The Continuous Process of Generation	270
2.2	The Discrete Process of Generation	271
2.3	Pseudo-Random Noise	273
2.4	Synthetic Noise Sources for RF Frequencies	275
3.	Superconducting Shift Registers for the Generation of	
	Random Noise	277
3.1	Dynamics of a Single Josephson Element	277
3.2	Switching Performance of a SQUID	280
3.3	The Flux Shuttle	285
3.4	The Feedback Logic	288
3.5	Realization of a fast SQUID Shift Register	292
3.6	Modifications Using High T _c Superconductors	294
Subject Index		