CONTENTS

THE KINETICS OF NONEQUILIBRIUM ELECTRONS AND PHONONS IN SUPERCONDUCTING TUNNEL JUNCTIONS A.M. Gulyan, G.F. Zharkov 1

Chapter 1: A General Consideration of Electron Kinetics	
in a Nonequilibrium Josephson Junction	2
1. Initial Relations	3
2. The Tunnel Source of Nonequilibrium	7
3. Electron-Electron Collisional Integral	11
Chapter 2: Electron-Hole Excitations in Nonequilibrium	
Superconductor Tunnel Junctions	16
4. Quantum Oscillations in the Nonequilibrium	
Chemical Potential	16
5. Emission Scattering by a Nonequilibrium	
Josephson Junction	21
6. The Critical State in a Symmetrical SiS -Junction	27
Chapter 3: Phonon Emission in Nonequilibrium Conditions	32
8. A Description of the Kinetics of Nonequilibrium	5.
Flectrons and Phonons by Means of the Analytic	
Continuation Technique	32
9 Phonon Emission Spectrum	36
Chapter 4: The Theory of an Acoustical Quantum	50
Machanical Oscillator Based on a	
Nonequilibrium Superconductor	28
10 Population Inversion in Neneguilibrium	50
Superconductors	20
11 Salf Consistent Vinstia Frustiana	72
12 Asymptotical SiC Impetion	42
12. Asymmetrical SIS -Junction	40
15. The Role of Fluctuations	49
Gonclusion	52
Bibliography	52
EQUILIBRIUM AND NONEQUILIBRIUM PHENOMENA IN	

INHOMOGENEOUS AND WEAKLY-COUPLED SUPERCONDUCTORS

	A.D. Zaikin	57
Introduction		
Chaptor 1. Dhonomona	Noor the Normal Matel	

Chapter 1: Phenomena Near the Normal Metal-Superconductor Boundary 63

1.	The Proximity Effect Near the Normal Metal-	
	Superconductor System	63
2.	The Meissner Effect and External Magnetic	
	Field Action on the Discrete Spectrum in the	
	NS-System	71
Chapte	er 2: The Stationary Josephson Effect in	
	Superconductor-Normal Metal-Superconductor	
	Junctions	76
3.	The Influence of Order Parameter Suppression on	
	Critical Current in SWS-Junctions	76
4.	The Stationary Josephson Effect in Wide SWS -	
	Inctions Containing Impurities.	78
5	The Stationary Josephson Effect in SNINS-	
5.	Ine Stationary Sosephson Briedt in Mondo-	82
Chant	or 3. The Nonstationary Josenheon Effect and	02
onapt	Nonequilibrium Properties of Pure	
	Superconductor_Normal Metal_	
	Superconductor Junctions	92
6	Fundamental Equations and Constal Palations	02
7	The Negatationary Jacobaca Effect in SWINS	72
/•	Ime Nonstationary Josephson Effect in Swilly-	0/
0	The Negatationary and Negatilibrium Properties	24
۰.	The Nonstationary and Nonequilibrium Properties	104
01	or Avo Henter Chates in Leasthern Innetions	104
Chapt	er 4: Vortex States in Josephson Junctions	110
9.	vortex Free Energy in the Presence of Current	11/
10.	The Spectrum of Uscillations in a Josephson	4.0.0
	Junction System	120
	Conclusion	123
	Appendix 1	125
	Appendix 2	127
	Bibliography	129
A NO	DNQUASICLASSICAL DESCRIPTION OF INHOMOGENEO	US
	SUPERCONDUCTORS	
	A.D. Zaikin, S.V. Panyukov	137

Derivation of the Equations for the Green's	
Functions	139
Factorization of the Green's Functions of a	
Superconductor	143
The Quasi-Classical Limit	145
Generalization of the Equations to the	
Nonstationary Case	147
Boundary Conditions for the μ -, ν -Functions	149
Conclusion	150
Bibliography	150
	Derivation of the Equations for the Green's Functions Factorization of the Green's Functions of a Superconductor The Quasi-Classical Limit Generalization of the Equations to the Nonstationary Case Boundary Conditions for the μ -, ν -Functions Conclusion Bibliography

QUANTUM TUNNELING WITH DISSIPATION A.D. Zaikin, S.V. Panyukov

153 Introduction 155 1. Calculation of the Exponent 156 2. The Preexponential Factor 159 Conclusion 160 Bibliography THE NONEQUILIBRIUM PROPERTIES OF SUPERCONDUCTORS UNDER OPTICAL EXCITATION AND CURRENT TUNNEL INJECTION 161 K.V. Mitsen 161 Introduction Chapter 1: The Nonequilibrium Properties of Superconductors Under Low-Intensity 163 Optical Pumping 163 1. Experimental Methodology 2. Investigation of the Quasi-Particle Distribution Function for the Case of Optical Pumping 165 3. Measurements of the Dependence of the Energy 167 Gap on Optical Pumping Intensity 4. Determining Quasi-Particle Recombination 170 Time Chapter 2: The Spatially Inhomogeneous State in Superconductors Under Optical Excitation 171 1. Experimental Technique 171 2. Experimental Results from an Investigation of the Properties of Superconductors Under 173 High-Level Optical Pumping 3. Discussion of Results. Comparison to Theory 179 4. The Kinetic Aspect of Spatially-Inhomogeneous 185 State Formation Chapter 3: Current Injection in Superconductors 187 1. The Spatially-Inhomogeneous State with Tunnel Injection in Films 187 2. Enhancement of Superconductivity with Quasi-190 Particle Tunneling Bibliography 197

KINETIC	THEORY O	F NONEQUILIBRIUM	PROCESSES
	IN SUP	ERCONDUCTORS	

V.G. Valeev, G.F. Zharkov, Yu.A. Kukharenko	203
Introduction	203
Chapter 1: Kinetic Equations for Superconductors	
with Collision Integrals Preserving	
Particle Number	208
1. Derivation of the Kinetic Equation	209
2. Collision Integrals and Relaxation Frequencies	214
Chapter 2: The Hydrodynamics of a Nonideal Super-	
conducting Fluid. First and Second	
Sound Damping	224
1. Conservation Laws	225
2. Hydrodynamic Equations of an Ideal Super-	
conducting Fluid	228
Application of the Chapman-Enskog Method to	
Solving the Kinetic Equation for the Density	
Matrix of a Superconductor	230
4. First and Second Sound Damping	239
Chapter 3: The Collisional Relaxation of the Order	
Parameter Modulus, and the Relaxation,	
Diffusion and Fluctuations of the Branch	
Imbalance of the Spectrum of Excitations	
and Nonequilibrium Spin Density in Super-	240
Conductors	240
1. Generalized Gnapman-Enskog Method	241
2. Junnet Electron Source	245
Fffacta	246
4 Colligional Relavation of the Order Parameter	240
Modulue	250
5. The Relaxation of the Population Imbalance of	250
the Excitation Spectrum of a Superconductor	
and the Possibilities for its Experimental	
Investigation	252
6. Thermoelectric Effects in Superconductors	256
7. Fluctuations in the Branch Imbalance of the	2.50
Excitation Spectrum of a Superconductor.	
Josephson Radiation Linewidth	265
8. Diffusion and Convective Transport of Spin	
Density in the Current State of a Superconductor	
with Nonequilibrium-Oriented Spins	268
Bibliography	273
SUBJECT INDEX	283