CONTENTS

FC	REWORD		vii
PF	REFACE		ix
AC	KNOWLE	DGMENTS	xiii
EĽ	TORIAL F	PREFACE	xix
С	ONTENTS		XXV
1.	TITANIUM	ALLOY SUPERCONDUCTORS—A TABULATED REVIEW	1
	TABLE 1-1	Unalloyed Titanium Alpha-Phase (hcp) Titanium	2
	TABLE 1-2	Unalloyed Titanium Beta-Phase (bcc) Titanium	6
	TABLE 1-3	Unalloyed Titanium Omega-Phase, Thin Films and Amorphous	7
	TABLE 1-4	Titanium-Vanadium Alloys The Superconducting Transition	8
	TABLE 1-5	Titanium-Vanadium Alloys The Mixed State	13
	TABLE 1-6	Titanium-Vanadium Alloys Current Transport Effects	19
	TABLE 1-7	Titanium-Chromium Alloys The Superconducting Transition	22
	TABLE 1-8	Titanium-Chromium Alloys Current Transport and Magnetic Effects	23
	TABLE 1-9	Titanium-Manganese Alloys - The Superconducting Transition	24
	TABLE 1-10	Titanium-Manganese Alloys Current Transport and Magnetic Effects	25
	TABLE 1-11	Titanium-Iron Alloys The Superconducting Transition	26
	TABLE 1-12	Titanium-Iron Alloys Current Transport and Magnetic Effects	28
	TABLE 1-13	Titanium-Cobalt Alloys	29
	TABLE 1-14	Titanium-Nickel Alloys	30
	TABLE 1-15	Iitanium-Zirconium and Titanium-Hafnium Alloys	31

TABLE	1-16	Titanium-Tantalum Alloys The Superconducting Transition	33
TABLE	: 1 -1 7	Titanium-Tantalum Alloys The Mixed State	34
TABLE	E 1-18	Titanium-Tantalum Alloys The Critical Current Density	35
TABLE	E 1- 19	Titanium-Molybdenum Alloys The Superconducting Transition	37
TABLE	E 1-20	Titanium-Molybdenum Alloys The Mixed State	40
TABL	E 1-21	Titanium-Molybdenum Alloys Current Transport Effects	42
TABLE	1-22	Titanium-Tungsten Alloys	43
TABLE	E 1-23	Titanium-Technetium and Titanium-Rhenium Alloys	44
TABLE	E 1-24	Titanium-Ruthenium and Titanium-Osmium Alloys	45
TABLE	E 1-25	Titanium-Rhodium, -Iridium, -Palladium and -Platinum Alloys	46
TABLE	E 1-26	Titanium-Base Ternary Alloys (Excluding Alloys with Niobium)	49
TABLE	E 1-27	Titanium-Niobium Alloys The Superconducting Transition	53
TABLI	E 1-28	Titanium-Niobium Alloys Critical Fields and the Mixed State	ຸ56
TABLE	E 1-29	Titanium-Niobium Alloys Critical Current Density, Flux Pinning	61
TABL	E 1-30	Titanium-Niobium-Boron, -Carbon, -Nitrogen, and -Oxygen Alloys	74
TABL	E 1-31	Titanium-Niobium-Simple-Metal Alloys	80
TABL	E 1-32	The Soviet Alloys	86
TABL	E 1-33	Titanium-Zirconium-Niobium Alloys (a) Research Alloys	89
		(b) A Commercial Wire Development Program	93
		(C) Properties of Rolled Strip	96 98
		(e) The Patent Literature	101
TABL	E 1-34	Titanium-Hafnium-Niobium Alloys	103
TABL	E 1-35	Titanium-Niobium-Vanadium Alloys	105
TABL	E 1-36	Titanium-Niobium-Tantalum Alloys	106
TABL	E 1-37	Titanium-Niobium-(Groups VI, VII, and VIII) Transition-Metal-Ternary Alloys	110
TABL	E 1-38	Titanium-Niobium-Base Quaternary Alloys	114
TABL	E 1-39	Amorphous Titanium Alloys	121
IINAI		TTANIIM	123
•			100
2.1	Sample 211	Purity and Measuring lechnique	123
	2.1.2	Refrigeration and Sample Temperature	125
	2.1.3	Spurious Mechanical Effects	125
2.2	Transi	tion Temperature The Influences of Pressure and Allotropic Transformation	126
	2.2.1	The Influence of Pressure	126
	2.2.2	The Influence of Structure Amorphous Titanium	127
	2.2.3	The Influence of Structure Omega-Phase	128
	2.2.4	The Influence of Structure The BCC-Phase	128
	2,2.5	The Influence of Structure Thin Films	129

2.

	2.3	The Isotope Effect	129
	2.4	Superconducting Transition Temperature of Unalloyed Ti	130
	2.5	Thermodynamic Critical Field of Unalloyed Ti	130
3.	TITA	NIUM-VANADIUM BINARY ALLOYS	131
	PART	1: THE SUPERCONDUCTING TRANSITION IN TITANIUM-VANADIUM ALLOYS	131
	3.1	Systematics of the Transition Temperature	131
	3.2	Microscopic Mechanisms of Superconductivity	133
		3.2.1 The Electron-Phonon Interaction	133
		3.2.2 The Magnetic Interaction	133
	3.3	Transition Temperature and Microstructure	134
		3.3.1 Properties of Annealed and Quenched Microstructures	134
		3.3.2 Influences of Aging and Other Heat Treatments	135
	3.4	Sputtered Films	135
	PART	2: THE MIXED STATE IN TITANIUM-VANADIUM ALLOYS	136
	3.5	The Lower Critical Field, H _{cl}	136
	3.6	The Upper Critical Field, H _{c2}	137
		3.6.1 Temperature Dependences Early Studies	137
		3.6.2 Composition Dependences Early Studies	139
		3.6.3 Temperature Dependences Paramagnetic Limitation	140
		3.6.4 Experimental Evaluation of the MAK1-WHH Theory	140
	27	The Sunface Shorth Critical Field U	141
	2.0	C_{3}	142
	٥.٥ ٥.٥	riux-riow Resistivity	143
	2.9	magnetization measurement as a metallurgical blagnostic lechnique	144
	PART	3: CURRENT TRANSPORT EFFECTS IN TITANIUM-VANADIUM ALLOYS	144
	3.10	Fluctuation Superconductivity	145
	3.11	Critiçal Current Density	145
		3.11.1 Bulk Alloys	145
		3.11.2 Sputtered Films	146
	3.12	Normal-State Transport Properties Related to Superconductivity	146
	PART	4: TABULATED DATA	148
4.	BINA	RY ALLOYS OF TITANIUM WITH CHBOMIUM, MANGANESE, IRON, COBALT, OR NICKEL	153
	ALLO	Y GROUP 1: TITANIUM-CHROMIUM BINARY ALLOYS	153
	4.1	Transition Temperature as a Function of Composition in Dilute Ti-Cr Allovs	153
	4.2	Transition Temperature and Microstructure in Ouenched and Heat-Treated Ti-Cr Allovs	154
		4.2.1 Transition Temperatures of Quenched Alloys	154
		4.2.2 Influence of Aging and Other Heat Treatments on the Transition Temperature	154

4.3 Superconductivity in Ti-Cr Alloys Tabulated Data	155
ALLOY GROUP 2: TITANIUM-MANGANESE BINARY ALLOYS	156
4.4 Transition Temperature as a Function of Composition in Ti-Mn Alloys	156
4.5 Calorimetric Studies of Superconductivity in Ti-Mn Alloys	156
4.6 Transport Property and Magnetic Studies of Ti-Mn Alloys	157
4.7 Superconductivity and Microstructure in Ti-Mn Alloys	158
4.8 Superconductivity in Ti-Mn Alloys Tabulated Data	158
ALLOY GROUP 3: TITANIUM-IRON BINARY ALLOYS	160
 4.9 Transition Temperature as a Function of Composition in Ti-Fe Alloys Alternative Models for Superconductivity 4.9.3 The Magnetic Interaction Model 	160 160
4.9.1 Other Localized-State Interactions	160
4.10 Transition Temperature and Microstructure in Quenched and Heat-Treated Ti-Fe Alloys 4.10.1 Transition Temperatures of Quenched and Equilibrated Alloys 4.10.2 Influence of Aging on the Transition Temperature	161 161
A 13 Calonimetria Studios of Superconductivity in Ti To Allow	161
	161
4.12 Transport Property and Magnetic Studies of Ti-Fe Alloys	163
4.13 Superconductivity in Ti-Fe Alloys Tabulated Data	164
ALLOY GROUP 4: TITANIUM-COBALT AND TITANIUM-NICKEL BINARY ALLOYS	166
4.14 Magnetic and Calorimetric Studies of the Superconducting Transition in Ti-Co Alloys	166
4.15 Superconductivity in Ti-Co Alloys Tabulated Data	167
4.16 Transport Property and Calorimetric Studies of Ti-Ni Alloys	168
BINARY ALLOYS OF TITANIUM WITH THE SECOND-LONG PERIOD (4d) AND Third-Long Period (5d) transition elements	169
ALLOY GROUP 1: TITANIUM-ZIRCONIUM AND TITANIUM-HAENTUM RINARY ALLOYS	160
51 Superconductivity in Ti-Zr Állove	105

5.1 Superconductivity in Ti-Zr Álloys	169
5.1.1 Composition Dependence of the Transition Temperature	169
5.1.2 Calorimetric Studies of Superconductivity	170
5.1.3 Concluding Discussion	170
5.2 Superconductivity in Ti-Hf Alloys	171
5.3 Superconductivity in Ti-Zr and Ti-Rf Alloys Tabulated Data	171
ALLOY GROUP 2: TITANIUM-TANTALUM BINARY ALLOYS	172
5.4 Superconductivity in Ti-Ta Alloys	172
5.5 Transition Temperatures of Ti-Ta Alloys	172
5.5.1 Composition Dependence of the Transition Temperature	172
5.5.2 Influence of Aging on the Transition Temperature	173
5.6 Upper Critical Fields of Ti-Ta Alloys	173
5.6.1 Experimental Studies of the Resistive Upper Critical Field	173

5.

	5.5.2 Influence of Spin-Orbit-Scattering Effects on the Paramagnetically Limited Upper Critical Fields of Ti-Ta Alloys	174
5.7	Critical Current Densities of Ti-Ta Allovs	175
	5.7.1 Factors Which Influence Flux Pinning	175
	5.7.2 Influence of Cold Work on the Critical Current Density	175
	5.7.3 Influence of Heat Treatment on the Critical Current Density	176
5.8	Sputtered Ti-Ta Alloy Films	176
5.9	Superconductivity in Ti-Ta Alloys Tabulated Data	178
ALLO	Y GROUP 3: TITANIUM-MOLYBDENUM BINARY ALLOYS	181
5.10	Superconductivity in Ti-Mo Alloys	181
5.11	Transition Temperatures of Ti-Mo Alloys	181
	5.11.1 The Superconducting Transition Temperatures of bcc Ti-Mo Alloys	181
	5.11.2 The Transition Temperatures of the Quenched Martensitic Alloys	183
	5.11.3 Influence of Deformation on the Superconducting Transition	183
	5.11.4 The Structures of Quenched and Deformed Ti-Mo Alloys	184
	5.11.5 Influence of Aging on the Superconducting Transition	185
5.12	The Mixed State of Ti-Mo Alloys	186
	5.12.1 The Development of Mixed State Theories	186
	5.12.2 Early Studies of the Upper Critical Field	187
	5.12.3 Pauli Paramagnetic Limitation and the Order of the Transition at H_{r2}	188
	5.12.4 Experimental Testing of the MAKI and WHH Theories of the Paramagnetic Mixed State	188
	5.12.5 The Mixed-State Hall Effect in Ti-Mo Alloys	189
5.13	Critical Current Densities of Ti-Mo Alloys	191
5.14	Anomalous Transport Properties of Ti-Mo Alloys	192
	5.14.1 Fluctuation Superconductivity	192
	5.14.2 Negative Normal-State Resistivity Temperature Dependence and Magnetoresistance	193
5.15	Superconductivity in Ti-Mo Alloys Tabulated Data	194
ALLO	Y GROUP 4: TITANIUM-TECHNETIUM AND TITANIUM-RHENIUM BINARY ALLOYS	197
5.16	Superconductivity in Ti-Tc Alloys	197
5.17	Superconductivity in Ti-Re Alloys	198
5.18	Superconductivity in Ti-Tc and Ti-Re Alloys Tabulated Data	198
ALLO	Y GROUP 5: TITANIUM-RUTHENIUM, -OSMIUM, -RHODIUM, -IRIDIUM, -PALLADIUM, AND -PLATINUM BINARY ALLOYS	199
5.19	Superconductivity in Ti-Ru Alloys	199
	5.19.1 Composition Dependence of the Transition Temperature	199
	5.12.2 Fluctuation Superconductivity in Ti-Ru Alloys	200
5.20	Superconductivity in Ti-Os Alloys	200
5.21	Superconductivity in Ti-Rh Alloys	201
	5.21.1 Composition Dependence of the Transition Temperature	201
	5.21.2 Calorimetric Studies of Superconductivity in Ti-Rh Allove	201
5 00		202
y.22	Superconductivity in 11-1" Alloys	202
	5.22.1 Maynetic Measurements	202
	5.22.2 Calorimetric Measurements	203

	5.23 Superconductivity in Ti-Pt Alloys	203
	5.24 Superconductivity in Binary Alloys of Ti with the 4d- and 5d-Group-VIII Transition Elements Ru, Rh, Ir, and Pt Tabulated Data	203
6.	TERNARY ALLOYS OF TITANIUM WITH SIMPLE METALS AND TRANSITION METALS	
	(EXCEPT NIOBIUM)	207
	6.1 Superconductivity in Ti-TM-SM Ternary Alloys	207
	6.2 Superconductivity in Ti-Zr-TM Ternary Alloys	208
	6.3 Superconductivity in Ti-V-TM Ternary Alloys	209
	6.3.1 General Discussion	209
	6.3.2 Superconductivity in T1-V-Cr Alloys	210
	6.4 Ti-Rh-TM (Including Noble-Metal) Ternary Alloys	210
	6.5 Ternary Ti-V-Base and Ti-Ta-Base Alloys with C, N, or O	211
	6.6 Superconductivity in Ternary Alloys of Ti with Simple Metals and Transition Metals (Except Nb) Tabulated Data	211
7	TITANIUM-NIOBIUM BINABY ALLOYS	213
		919
	Alloy Compositions	213
	Magnetic Fields	213
	PART 1: THE SUPERCONDUCTING TRANSITION IN TITANIUM-NIOBIUM ALLOYS	215
	7.1 The Superconducting Transition Temperature	215
	7.2 Systematics of the Transition Temperature	215
	7.3 Transition Temperatures of Low-Concentration Ti-Nb Alloys	217
	7.4 Calorimetric Measurements of the Transition Temperature	218
	7.5 Fluctuation Effects Transport Properties	218
	7.5.1 Electrical Resistivity	218
	7.5.2 Thermal Conductivity	219
	7.6 Influence of Aging on the Transition Temperature	219
	7.7 Commercial Alloys	220
	PART 2: THE MIXED STATE IN TITANIUM-NIOBIUM ALLOYS	220
	7.8 The Magnetic Properties of Type-II Superconductors	220
	7.9 The Upper Critical Field, H _{c2} , as a Function of Metallurgical Variables	222
	7.9.1 Alloying	222
	7.9.2 Deformation and Heat ireatment	223
	7.10 The Upper Critical Field, H _{c2} , as a Function of Temperature	225
	7.10.2 Paramagnetic Theories of Mixed-State Temperature Dependence	225
	7.11 Conclusions from MAKI-WHH Theory	229

7.12	The Lower Critical Field, H _{cl}	230
7.13	The Role of Ti-Nb Alloys in the Formulation of Macroscopic Models of the Mixed State	231
7.14	Static Magnetization and the Critical State	232
	7.14.1 Magnetization in the Mixed State	232
	7.14.2 Magnetization and Critical Current	232
7.15	Flux Creep	233
7.16	Flux Flow and Flux Jumping	234
	7.16.1 Magnetic Studies of Flux Flow	234
	7.16.3 Flux Jumping	235
7 17	Phenomenological Studies of the Upper Critical Sigld	200
	7.17.1 The Significance of H_{-0} in Technical Superconductivity	238
	7.17.2 Composition Dependence of H _{c2}	239
	7.17.3 Temperature Dependence of H_{c2}	240
	7.17.4 The Status of Resistive Upper Critical Field Determination Experimental Artifacts	241
PART	3: CRITICAL CURRENT DENSITY IN TITANIUM-NIOBIUM ALLOYS	242
7.18	Introduction	242
	7.18.1 Early Literature and Patents (pre-1966) Relating to Technical Ti-Nb Superconductors	242
	7.18.2 Early Studies of Pulse and AC Effects and Long-Sample (Coil) J _c -Measurements in Ti-Nb Superconductors	243
	7.18.3 Scope of the Discussion of Critical Current Density	244
7.19	Metallurgical Introduction	244
	7.19.1 Microstructure and Macrostructure in Ti-Nb Alloys	244
	7.19.2 Equilibrium and Nonequilibrium Phases and the Effects of Deformation and Aging	245
7.20	Quenched-and-Aged Microstructures of Ti-Nb Alloys	246
	7.20.1 The Occurrence of the Martensitic and Omega-Phases in Quenched Ti-Nb Alloys	246
	7.20.2 The Occurrence of the Isothermal- ω , Separated- β , and Equilibrium- α Phases in Aged Ti-Nb	247
7.21	Metallography of Deformed-and-Aged Ti-Nb Alloys	249
7.22	Influence of Metallurgical Variables on the Critical Current Density	254
7.23	R ₂ Q Recrystallized or β-Quenched Ti-Nb Alloys	260
7.24	C,Q,C//D Cast, β -Quenched or β -Cooled and Cold-Deformed Ti-Nb Alloys	260
7.25	R,Q,C//A Recrystallized, β -Quenched or β -Cooled and Aged Ti-Nb Alloys	260
7.26	D//A Cold-Deformed-and-Aged Ti-Nb Alloys	262
	7.26.1 Low-Concentration (<30 at.% Nb) Ti-Nb Alloys	262
	7.20.2 Intermediate-concentration (30-40 at.% ND) II-ND Alloys 7.26.3 High-Concentration (>40 at % Nb) II-Nb Alloys	26/
	7.26.4 Flux-Pinning Microstructures of Cold-Worked-and-Aged Ti-Nb Alloys	272
	7.26.5 Section Summary Characteristics of Deformed-and-Aged (D//A) Ti-Nb Alloys	274
7.27	D//A//D Cold Deformed, Aged and Final Deformed Ti-Nb Conductors An Introduction to Technical Process Development	276
7.28	D//A-D-A//D Cold Deformed, Multiple-Intermediate-Aged and Final Deformed Ti-Nb Conductors	
	A Further Introduction to Technical Process Development	279
	7.28.2 Fundamental Contributions by WILLBRAND, ARNDT et al, Krupp Forschungsinstitut, Essen, BRD	279
	GmbH, Hanau, BRD	281

- 7.29 Sputtered Ti-Nb Alloy Films
- PART 4: RECENT ADVANCED IN TITANIUM-NIOBIUM SUPERCONDUCTORS
- 7.30 Flux-Pinning Microstructures in Ti-Nb Alloys7.30.1 Precipitate-Free Subbands7.30.2 Subbands and Precipitates
- 7.31 Process Optimization of Ti-Nb Superconductors 7.31.1 Intermediate Heat Treatment 7.31.2 Final Cold Deformation
- 7.32 Recent Advances in Process Optimization
 7.32.1 Total Area Reduction and Final Cold Deformation
 7.32.2 Thermomechanical Process Optimization
 7.32.3 Critical Field Limitation
- PART 5: CRITICAL CURRENT DATA -- SOME GRAPHICAL REPRESENTATIONS

8. TITANIUM-NIOBIUM AND TITANIUM-NIOBIUM-BASE ALLOYS CONTAINING SMALL ADDITIONS OF BORON, CARBON, NITROGEN, OR OXYGEN

ALLOY GROUP 1: BORON AND CARBON ADDITIONS TO TITANIUM-NIOBIUM

- 8.1 Boron Additions to Ti-Nb
- 8.2 Carbon Additions to Ti-Nb
- ALLOY GROUP 2: NITROGEN ADDITIONS TO TITANIUM-NIOBIUM, TITANIUM-HAFNIUM-NIOBIUM AND TITANIUM-NIOBIUM-TANTALUM
- 8.3 Nitrogen Additions to Ti-Nb
 - 8.3.1 Nitrogen Additions to Ti-33Nb (20 at.% Nb)
 - 8.3.2 Nitrogen (and Occasionally Nitrogen Plus Oxygen) Additions to Ti-40Nb (25.5 at.% Nb)
 - 8.3.3 Nitrogen (and Occasionally Nitrogen Plus Oxygen) Additions to Ti-56Nb (39.5 at.% Nb)
 - 8.3.4 Nitrogen Additions to Ti-66Nb (50 at.% Nb)
- 8.4 Nitrogen Additions to Ti-Hf-Nb and Ti-Nb-Ta Alloys
- ALLOY GROUP 3: OXYGEN ADDITIONS TO TITANIUM-NIOBIUM AND SOME TITANIUM-NIOBIUM-BASE TERNARY AND QUATERNARY ALLOYS
- 8.5 Transition Temperatures of Ti-Nb-O Alloys
- 8.6 Critical Current Densities of Ti-Nb-O Alloys
 - 8.6.1 Oxygen Additions to Ti-40Nb (25.5 at.% Nb)
 - 8.6.2 Oxygen Additions to Ti-50Nb (34 at.% Nb)
 - 8.6.3 Oxygen Additions to Ti-56Nb (39.5 at.% Nb)
 - 8.6.4 Identification of the Active Impurities in Kroll-Process Ti
 - 8.6.5 Oxygen Additions to Ti-60Nb (43.5 at.% Nb)
- 8.7 Critical Current Densities of Quaternary Alloys Containing Oxygen
 - 8.7.1 Oxygen Additions to Ti-Nb-TM Alloys
 - 8.7.2 Oxygen Additions to Ti-Nb-Rare-Earth Alloys

TABULATED DATA -- INFLUENCES OF C, N, AND O ON THE T, OF TI-ND

^{7.33} Comparative Survey of Some Contemporary High-Field Cu-Stabilized Ti-Nb Monolithic Composite Conductors

9.1	Metallurgical Considerations	
9.2	Superconductivity in Ti-Nb-SM Alloys A Comparative Survey	
	9.2.1 The Superconducting Transition Temperature	
	9.2.2 The Upper Critical Field	
ALLO	Y GROUP 1: TITANIUM-NIOBIUM-SIMPLE-METAL TERNARY ALLOYS	
9.3	Al Additions to Ti-Nb	
	9.3.1 The Transition Temperature	
	9.3.2 The Critical Field	
	9.3.3 Critical Current Density	
9.4	Si Additions to Ti-Nb	
9.5	Ga Additions to li-Nb	
9.6	Y Additions to Ti-Nb	
	9.6.2 Y Additions to T_{-55Nb}	
9.7	Ag Additions to Ti-Nb	
9.8	In Additions to Ti-Nb	
9.9	Sn Additions to Ti-Nb	
9.10	Additions of Sb, Au, Pb, U, and Pairs of Simple Metals to Ti-Nb	
ALLC	Y GROUP 2: TITANIUM-NIOBIUM-COPPER TERNARY ALLOYS	
9.11	Superconductivity in Ti-Nb-Cu Alloys	
9.12	? Transition Temperatures of Ti-Nb-Cu Alloys	
	9.12.1 Low-Concentration Ti-Nb-Cu Alloys	
	9.12.2 Intermediate-Concentration Ti-Nb-Cu Alloys	
9.13	Opper Critical Fields of Ti-Nb-Cu Alloys	
9.14	Critical Current Densities of Ti-Nb-Cu Alloys	
	9.14.1 Critical Current Densities of Research Alloys	
	9.14.2 Critical Current Densities of Technical Alloys	
ALLC	DY GROUP 3: TITANIUM-NIOBIUM-GERMANIUM TERNARY ALLOYS	
9.15	5 Transition Temperatures of Ti-Nb-Ge Alloys	
9.16	5 Upper Critical Fields of Ti-Nb-Ge Alloys	
9.17	Critical Current Densities of Ti-Nb-Ge Alloys	
	9.17.1 Critical Current Densities of Research Alloys	
	9.17.2 Critical Current Densities of Technical Alloys	

TYPICAL INTERSTITIAL-ELEMENT LEVELS IN TI-50ND AND ITS CONSTITUENTS

÷

316

10. SOVIET TECHNICAL ALLOYS

10.1	Processing of Soviet Alloys Homogeneity of the Starting Billet	341
10.2	Processing and Structures of 35 BT	343
10.3	Processing and Structures of 50 BT	343
	10.3.1 Quenched-Plus-Aged 50 BT-Type Alloys	343
	10.3.2 Deformed-Plus-Aged 50 BT-Type Alloys	343
10.4	Processing and Structures of 65 BT	344
	10.4.1 Quenched-Plus-Aged 65 BT	344
	10.4.2 Deformed-Plus-Aged 65 BT	344
10.5	Critical Current Densities of the Soviet Alloys	344
	10.5.1 The Critical Current Density of 65 BT	344
	10.5.2 Critical Current Densities of Other Alloys	344
10.6	Applications of Soviet Technical Alloys	345
	10.6.1 Coil Tests of T 60 and SS 2	345
	10.6.2 Welded Joints	345
	10.6.3 Small Coil Properties of 65 BT	346

341

11.	TITA	NIUM-ZIRCONIUM-NIOBIUM TERNARY ALLOYS	347
	11.1	Superconductivity and Metallurgy in Ti-Zr-Nb Alloys	348
	PART	1: RESEARCH AND DEVELOPMENT OF TITANIUM-ZIRCONIUM-NIOBIUM ALLOY SUPERCONDUCTORS	350
	11.2	Transition Temperatures of Ti-Zr-Nb Research Alloys	350
	11.3	Critical Fields of T1-Zr-Nb Research Alloys	350
		11.3.1 The Lower Critical Field, H _{cl}	350
		11.3.2 The Upper Critical Field, H _{c2}	351
	11.4	Critical Current Densities of Ti-Zr-Nb Research Alloys	354
	11.5	Introduction to the Patent Literature of Ti-Zr-Nb Alloy Superconductors	357
	PART	2: TITANIUM-ZIRCONIUM-NIOBIUM TECHNICAL ALLOY DEVELOPMENT IN JAPAN	360
	11.6	Metallurgy of the Technical Superconducting Ti-Zr-Nb Alloys	360
		11.6.1 Precipitation from the Zr-Nb-Base (X-Type) Alloy, Ti_{10} -Zr ₄₀ -Nb ₅₀	360
		11.6.2 Precipitation from the Ti-Nb-Base (Z-Type) Alloy, Ti ₆₀ -Zr ₅ -Nb ₃₅	361
	11.7	Alloy and Process Development for T1-Zr-Nb	361
		11.7.1 Screening Studies	362
		11.7.2 Properties of the X-Type Alloy, Ti ₁₀ -Zr _{an} -Nb ₅₀	362
		11.7.3 Properties of the Z-Type Alloys, Ti ₆₀ -Zr ₅ -Nb ₃₅ and Ti ₄₅ -Zr ₁₆ -Nb ₄₀	362
		11.7.4 An Intercomparison of the Properties of X-Type Ti ₁₀ -Zr ₄₀ -Nb ₅₀ and Z-Type Ti ₆₀ -Zr ₅ -Nb ₃₅	362
	11.8	Comparative Studies of X-Type and Z-Type Alloy Wires	364
		11.8.1 The Ternary Critical-Current-Density Triangle	364
		11.8.2 The Zr-Nb-Rich (X-Type Superconductor) Zone	365
		11.8.3 The Ti-Nb-Rich (Z-Type Superconductor) Zone	365
		11.8.4 Final Commentary	365
	11.9	Properties of Contemporary Commercial Ti-Zr-Nb Conductors	366

11.10 Alloy and Process Development for Ti-Zr-Nb Rolled-Ribbon (Strip) Conductor	367
11.10.1 Superconductivity in Ti-Zr-Nb Rolled Strip	367
11.10.2 Properties of X-Type Ti ₁₀ -Zr ₄₀ -Nb ₅₀ Rolled Strip	368
11.10.3 Properties of Z-Type Ti ₅₅₋₇₅ -Zr ₅ -Nb Rolled Strip	369
11.11 Intercomparison of the Properties of Ti-Zr-Nb Wire and Rolled Strip	370
PART 3: ALTERNATING-CURRENT-AND-FIELD EFFECTS IN TITANIUM-ZIRCONIUM-NIOBIUM ALLOY SUPERCONDUCTORS	371
11.12 AC Loss Studies of Technical Ti-Zr-Nb Superconductors	372
11.13 Critical Alternating Current in Zero Applied Magnetic Field	372
11.14 Critical Direct Current in a Longitudinal Alternating Magnetic Field	372
11.15 Alternating Current Loss in Zero Applied Magnetic Field	373
11.16 Magnetic Hysteresis Loss in Bare and Stabilized Ti-Zr-Nb Superconductors	373
11.17 Magnetic Hysteresis Loss in Bare Ti-Zr-Nb Alloy Wire	374
11.17.1 Influence of Composition	374
11.17.2 Influence of Wire Diameter	374
11.17.3 Hysterests and Flux-Jump Anisotropies	374
11.18 AC Losses in Open-Circuited (i.e. Non-Inductively Wound) Composite Superconductors in Transverse Magnetic Fields	375
11.19 AC Loss in Ti-Zr-Nb-Base Composite Conductors Cu Matrix	375
11.19.1 Applied Field Amplitude	376
11.19.2 Twist Pitch	376
11.20 AC Loss in Ti-Zr-Nb-Base Composite Conductors Resistive (Mixed) Matrix	376

12. TITANIUM-NIOBIUM-BASE TERNARY TRANSITION METAL ALLOYS (EXCEPT TITANIUM-ZIRCONIUM-NIOBIUM)

379

ALLOY GROUP 1: TITANIUM-HAFNIUM-NIOBIUM AND TITANIUM-NIOBIUM-VANADIUM ALLOYS	379
12.1 Superconductivity in Ti-Hf-Nb Alloys	379
12.1.1 Introduction	379
12.1.2 Transition Temperatures of Ti-Hf-Nb Alloys	380
12.1.3 Critical Fields of Ti-Hf-Nb Alloys	380
12.1.4 Critical Current Densities of Ti-Hf-Nb Alloys	381
12.2 Superconductivity in Ti-Nb-V Alloys	382
12.2.1 Transition Temperatures of Ti-Nb-V Alloys	382
12.2.2 Critical Fields of Ti-Nb-V Alloys	382
12.2.3 Critical Current Densities of Ti-Nb-V Alloys	383
ALLOY GROUP 2: TITANIUM-NIOBIUM-TANTALUM ALLOYS	383
12.3 Superconductivity in Ti-Nb-Ta Alloys	383
12.4 Transition Temperatures of Ti-Nb-Ta Alloys	383
12.5 Upper Critical Fields of Ti-Nb-Ta Alloys	384
12.6 Critical Current Densities of Ti-Nb-Ta Alloys	386
12.7 Intercomparison of the Critical Current Densities of Ti-Nb and Ti-Nb-Ta Alloys	390
12.7.1 Comparative Data	390

12.7.2 Concluding Summary

ALLOY GROUP 3: ALLOYS OF TITANIUM-NIOBIUM WITH GROUPS VI THROUGH VIII TRANSITION ELEMENTS

- 12.8 Alloys of Ti-Nb with the Group-VI Elements Cr, Mo, and W 12.8.1 Transition Temperatures of Ti-Nb-(Cr,Mo,W) Alloys 12.8.2 Critical Fields of Ti-Nb-(Cr,Mo,W) Alloys 12.8.3 Critical Current Densities of Ti-Nb-(Cr,Mo) Alloys
- 12.9 Alloys of Ti-Nb with the Group-VII Elements Mn and Re
- 12.10 Alloys of Ti-Nb with the Group-VIII Elements (Fe through Pt) 12.10.1 Transition Temperatures of Ti-Nb-(Group-VIII)TM Alloys 12.10.2 Critical Fields of Ti-Nb-(Group-VIII)TM Alloys 12.10.3 Critical Current Density of Ti-Nb-Fe

TABULATED DATA -- SUPERCONDUCTIVITY IN TITANIUM-NIOBIUM-TRANSITION-METAL ALLOYS

13. TITANIUM-NIOBIUM-BASE QUATERNARY ALLOYS

- 13.1 The Patent Literature
- PART 1: THE SUPERCONDUCTING TRANSITION IN TITANIUM-NIOBIUM-BASE QUATERNARY ALLOYS
- 13.2 Influence of Simple-Metal Additions on the Transition Temperature
- 13.3 Transition Temperatures of Quaternary Alloys Selected from the Scheme: [Group IV (Ti-(Zr-Hf))]-[Group V ((V-Ta)-Nb)]
- 13.4 Transition Temperatures of Ti-Nb-TM1-TM2 Alloys -- Conclusion
- PART 2: CRITICAL FIELDS OF TITANIUM-NIOBIUM-BASE QUATERNARY ALLOYS
- 13.5 Quaternary-Alloy Critical Fields -- An Overview
- 13.6 The Influence of Hf on the H_{c2} of Ti-Zr-Nb and Ti-Nb-Ta
- 13.7 The Influence of Ta on the H_{c2} of Ti-Zr-Nb
- PART 3: CRITICAL CURRENT DENSITY IN TITANIUM-NIOBIUM-BASE QUATERNARY ALLOYS
- 13.8 Quaternary Alloy Critical Current Densities -- An Overview
- 13.9 The Influence of Hf on the Critical Current Density of Ti-Zr-Nb
- 13.10 The Influence of Ta on the Critical Current Density of Ti-Zr-Nb 13.10.1 Ta and Other Additions to Zr-Nb-Rich Ti-Zr-Nb 13.10.2 Ta Additions to Equiatomic Ti-Zr-Nb
 - 13.10.3 Ta Additions to T1-Nb-Rich Ti-Zr-Nb
- 13.11 Properties of the Technical Quaternary Alloy Ti₆₁-Zr₆-Nb₂₇-Ta₆
 13.11.1 Stress Effects
 13.11.2 Optimization Studies
 13.11.3 Flux Pinning and the Scaling Laws

14. AMORPHOUS TITANIUM ALLOY SUPERCONDUCTORS

ALLOY GROUP 1: AMORPHOUS AND GLASSY METALS

14.1 Stability and Properties of Amorphous Alloys

14.2 Amorphous and Glassy Alloy Superconductors	425
14.3 Transition Temperatures of Amorphous Superconductors	426
ALLOY GROUP 2: GLASSY TITANIUM ALLOYS	428
14.4 Phase Stability and Mechanical Properties of Glassy Ti-Nb-Si Alloys	428
14.5 Aging and Crystallization of Glassy Ti-Nb-Si Alloys 14.5.1 Aging 14.5.2 Crystallization	428 429 429
14.6 Transition Temperatures of Amorphous Ti Alloys 14.6.1 Composition Dependence in the Ternary Alloys 14.6.2 Composition Dependence in the Quaternary Alloys 14.6.3 Influence of Cold Deformation 14.6.4 Influence of One-Hour Heat Treatment	429 429 430 431 431
14.7 Critical Fields of Amorphous Ti Alloys	432
14.8 Critical Current Densities of Amorphous Ti Alloys 14.8.1 As-Quenched Metallic-Glass Ribbon 14.8.2 Alloy Ribbons Crystallized from the Amorphous Phase	433 433 434

REFERENCES	435
AUTHOR INDEX	473
SUBJECT INDEX	485

.