CONTENTS | Preface | page
ix | |---|---| | I GENERAL INTRODUCTION | | | Scope of the subject Notation and some basic ideas Summary of subject matter in following chapters General references | 1
2
4
6 | | II REFLECTION OF ELECTROMAGNETIC WAVES FROM HORIZONTALLY
STRATIFIED MEDIA | | | Abstract 1. Introduction 2. Plane wave incidence 3. Extension to perpendicular incidence 4. Impedance matching and natural oscillations in stratified media 5. Line source excitation 6. Line source on a homogeneous medium 7. Line source over a thin layer 8. The radiation field of the line source for any number of layers 9. Magnetic line source over a stratified medium 10. Magnetic line source over a dielectric coated conductor 11. The fields of a vertical electric dipole over a stratified half-space 12. Some experimental measurements Appendix A Evaluation of the integral P Appendix B Numerical results for surface impedance of a stratified conductor References | 8
10
15
17
21
25
27
31
32
33
35
45
48
53
62 | | III REFLECTION OF ELECTROMAGNETIC WAVES FROM INHOMOGENEOUS
MEDIA WITH SPECIAL PROFILES | | | Abstract 1. Introduction 2. General considerations 3. Inverse square profile 4. Profile with an exponential transition 5. Other exponential profiles 6. Linear Profile 7. Extension to vertical polarization 8. Exponential profile with vertical polarization 9. Power law profile for normal incidence References | 64
64
65
68
70
75
78
79
81
84 | vi Contents ## IV APPROXIMATE METHODS FOR TREATING REFLECTIONS FROM INHOMOGENEOUS MEDIA | Abstract | 85 | |---|------------| | 1. Introduction and the conventional WKB method | 85 | | 2. WKB method for oblique incidence | 86 | | 3. Generalization of WKB method | 88 | | 4. Generalized WKB method for vertical polarization | 90 | | 5. Relation to geometrical optics | 91 | | 6. Application to tropospheric propagation | 93 | | 7. The phase integral approach | 95 | | 8. A generalization of the phase integral method | 98 | | 9. Phase integral for vertical polarization | 99 | | 10. Rapidly varying transition region | 100 | | 10.1 Introduction | 101 | | 10.2 Differential equation for the reflection coefficient | 102 | | 10.3 Iterative solution | 103 | | 10.4 Some simple extensions of the solution | 103 | | 10.5 Discussion of the form of the solution | 105 | | References | | | V Propagation along a Spherical Surface | | | Abstract | 107 | | 1. Basic Formulation | 107 | | 2. The Watson transformation | 110 | | 3. Formula for small curvature | 113 | | 4. Influence of an inhomogeneous atmosphere | 115 | | 5. Equivalent earth radius concept | 117 | | 6. Extension to non-linear atmosphere | 118 | | 7. Asymptotic form of the solution | 122 | | 8. Distance to the horizon | 124 | | 9. Concluding remarks References | 128 | | ACCIONAGE SERVICES | 130 | | VI FUNDAMENTALS OF MODE THEORY OF WAVE PROPAGATION | | | Abstract | 132 | | 1. Introduction | 132 | | 2. Basic concepts | 134 | | 3. Formulation for flat earth case | 137 | | 3.1 Vertical dipole excitation | 137 | | 3.2 Horizontal dipole excitation | 143 | | 4. Properties of the modes for flat earth case | 147 | | 4.1 Vertical polarization | 147 | | 4.2 Horizontal polarization 5. Influence of earth curvature | 151 | | 6. Mode series for a curved earth | 153 | | 7. Antipodal effects | 157 | | 8. Resonator-type oscillations between earth and the ionosphere | 162 | | 9. Excitation by horizontal dipoles for the curved earth | 163 | | 10. Higher approximations to the curved earth theory | 168 | | 11. Influence of stratification at the lower edge of the ionosphere | 174
182 | | 12. Average decay laws | 187 | | 13. Appendix | 197 | | References | 193 | | | 1/3 | | Contents | γii | |--|--| | Abstract 1. Introduction 2. The ground wave 3. The sky waves 4. The roots of the modal equation 5. Comments on a more accurate form of the mode equation 6. The height-gain functions 7. The excitation of V.L.F. modes 8. Discussion of the earth detached mode References | page
196
196
196
197
201
213
218
221
224
225 | | Abstract 1. Introduction 2. The dielectric properties of a plasma 3. The field equations 4. Reflection coefficient for a plane boundary between free space and plasma 5. Reflection from a stratified plasma 6. Arbitrary inclination of magnetic field 7. Reflection from a homogeneous plasma with arbitrary magnetic field 8. Derivation of approximate reflection coefficients 9. The mode series for an anisotropic ionosphere 10. Effect of earth curvature Appendix A Appendix B A Note on the energy dependence of the collision frequency Appendix C Application of the Booker quartic to calculation of reflection coefficients References | 226
226
227
231
233
236
239
243
246
251
254
256
260
263 | | Abstract 1. Introduction 2. Approximate solutions of the mode equation 2.1 Alternate expansion for the reflection coefficient 2.2 Application of the Q.L. approximation 2.3 Application of the transverse condition 2.4 Extension to arbitrary dipping magnetic field 2.5 Inclusion of earth curvature in the analysis 3. Measured field strength vs. distance data at V.L.F. 4. Measured phase characteristics of V.L.F. carriers 5. Measurements of diurnal phase shifts at V.L.F. 6. Sferics and mode theory References | 264
264
264
265
268
269
274
277
281
284
285
287 | viii Contents | X | E.L.F. | (EXTREMELY | Low | FREQUENCY) | PROPAGATION—THEORY | AND | |---|--------|------------|-----|------------|--------------------|-----| | | | | | EXPREIMEN | rr | | | Abstract 1. Introduction 2. Basic theoretical model 3. Antipodal effects 4. Barth-flattening approximation 5. Distance and frequency dependence 6. Near-field behavior 7. Effect of the earth's magnetic field 8. Effect of an inhomogeneous atmosphere 9. Propagation of E.L.F. pulses 10. Interpretation of Hepburn's experimental data 11. Influence of horizontal currents Appendix References | page
289
289
289
291
291
295
298
300
306
309
313
315
318
321 | |--|--| | XI ASYMPTOTIC DEVELOPMENT FOR GUIDED WAVE PROPAGATION | | | Abstract 1. Introduction 2. Formulation of problem 3. The complex integral representation 4. The mode representation 5. Ray theory and saddle point approximations 6. Relation to geometrical optics 7. Treatment at the caustic 8. Applications to tropospheric propagation 9. Concluding remarks References | 324
324
325
328
329
332
336
338
339
340 | | XII SUPERREFRACTION AND THE THEORY OF TROPOSPHERIC DUCTING | | | Abstract 1. Introduction 2. Formulation 3. The asymptotic solution 4. The special case of a normal atmosphere 5. Reduction to ray theory for "normal" atmosphere 6. Extension of theory to include superrefraction 7. Refinements to the asymptotic approximations 8. A few quantitative results for tropospheric ducting 9. Reduction to the phase integral form 10. The modified index of refraction method References | 341
341
343
344
346
348
351
354
356
358 | | Subject Index | 365 | | Author Index | 370 |