Contents

1	Elementary Concepts of Electric and Magnetic Fields1
	1.1 Flux and Flux Density of Vector Fields
	1.2 Equations of Matter - Constitutive Relations10
2	Types of Vector Fields
	2.1 Electric Source Fields15
	2.2 Electric and Magnetic Vortex Fields
	2.3 General Vector Fields17
3	Field Theory Equations
	3.1 Integral Form of Maxwell's Equations
	3.1.1 Faraday's Induction Law in Integral Form Vortex Strength of Electric Vortex Fields
	3.1.2 Ampere's Circuital Law in Integral Form Vortex Strength of Magnetic Vortex Fields23
	3.1.3 Gauss's Law of the Electric Field Source Strength of Electric Fields
	3.1.4 Gauss's Law of the Magnetic Field Source Strength of Magnetic Fields
	3.2 Law of Continuity in Integral Form Source Strength of Current Density Fields

	3.3 Differential Form of Maxwell's Equations
	3.3.1 Faraday's Induction Law in Differential Form Vortex Density of Electric Vortex Fields
	3.3.2 Ampere's Circuital Law in Differential Form Vortex Density of Magnetic Vortex Fields 42
	3.3.3 Divergence of Electric Fields Source Density of Electric Fields
	3.3.4 Divergence of Magnetic Fields Source Density of Magnetic Fields
	3.4 Law of Continuity in Differential Form Source Density of Current Density Fields
	3.5 Maxwell's Equations in Complex Notation
	3.6 Integral Theorems of Stokes and Gauss
	3.7 Network Model of Induction
4	Gradient, Potential, Potential Function
	4.1 Gradient of a Scalar Field
	4.2 Potential and Potential Function of Static Electric Fields
	4.3 Development of the Potential Function from a Given Charge Distribution
	4.3.1 Potential Function of a Line Charge
	4.3.2 Potential Function of a General Charge Distri- bution
	4.4 Potential Equations

		4.4.1	Potential Equations for Fields without Space Charges
		4.4.2	Potential Equations for Fields with Space Charges
	4.5	Elect	ric Vector Potential84
	4.6	Vecto	r Potential of the Conduction Field
5	Pot	ential	and Potential Function of Magnetostatic Fields90
	5.1	Magn	etic Scalar Potential
	5.2	Poter	ntial Equation for Magnetic Scalar Potentials92
	5.3	Magn	etic Vector Potential94
	5.4	Poter	ntial Equation for Magnetic Vector Potentials 100
6	Cla	ssifica	tion of Electric and Magnetic Fields
	6.1	Statio	onary Fields
		6.1.1	Electrostatic Fields107
		6.1.2	Magnetostatic Fields
		6.1.3	Static Conduction Field (DC Current- Conduction Field)111
	6.2	Quas	si-Stationary Fields (Steady-State) Fields 115
		6.2.1	Quasi-Static Electric Fields
		6.2.2	Quasi-Static Magnetic Fields118
		6.2.3	Quasi-Static Conduction Fields

6.2.4 Conduction Fields with Skin Effect
6.3 Nonstationary Fields, Electromagnetic Waves 125
6.3.1 Wave Equation
6.3.2 Retarded Potentials
6.3.3 Hertz Potentials134
6.3.4 Energy Density in Electric and Magnetic Fields, Energy Flow Density in Electromagnetic Waves
7 Transmission-Line Equations
8 Typical Differential Equations of Electrodynamics
and Mathematical Physics
8.1 Generalized Telegraphist's Equation
8.2 Telegraphist's Equation with a, b>0; c=0
8.3 Telegraphist's Equation with a>0; b=0; c=0 $\dots \dots 153$
8.4 Telegraphist's Equation with b>0; a=0; c=0154
8.5 Helmholtz Equation156
8.6 Schroedinger Equation
8.7 Lorentz's Invariance of Maxwell's Equations
9 Numerical Calculation of Potential Fields
9.1 Finite-Element Method
9.2 Finite-Difference Method
9.3 Charge Simulation Method

.

9.4	Monte Carlo Method	90
9.5	General Remarks on Numerical Field Calculation 1	.92

Appendix

, , ,

A1	Units
A2	Scalar and Vector Integrals
A3	Vector Operations in Special Coordinate Systems 199
A4	Integral Operators {curl}-1, (div}-1, and {grad}-1
A5	Complex Notation of Harmonic Quantities
Lite	rature
Ind	ex