Table of Contents

. .

1.	Ger	eral Introduction	1	
2. The Bernoulli Problem				
	2.1	The Physical Concept of Probability	5	
	2.2	Distribution Laws for Random Variables	10	
	2.3	The Binomial Distribution Law	12	
	2.4	Examples of Applications of the Binomial Law	16	
	2.5	Shot Effect. The Poisson Distribution	19	
	2.6	The De Moivre-Laplace Limit Theorem	22	
	2.7	Normal or Gaussian Distribution Law	24	
	2.8	Exercises	30	
3.	Rar	ndom Pulses	35	
	3.1	Statement of the Problem	35	
	3.2	Characteristic Functions	39	
	3.3	Distribution Function for a Poisson Pulse Process	44	
	3.4	Covariance	51	
	3.5	Some Generalization of the Pulse Problem	58	
	3.6	Impulse Noise and the Central Limit Theorem	65	
	3.7	Exercises	68	
4. Random Functions				
	4.1	General Definitions	83	
	4.2	Markov Processes	87	
	4.3	Stationary Processes	91	
	4.4	Moments of Random Functions	92	
	4.5	Correlation Theory	95	
	4.6	Probabilistic Convergence	99	
	4.7	Ergodicity of Random Processes	108	
	4.8	Exercises	118	
5. Markov Processes				
	5.1	Preliminary Remarks	122	
	5.2	Smoluchowski Equation	124	

5.3	Markov Process with Discrete States	128
5.4	Transition from Discrete Sequence to Processes with	
	Continuous Sets of States. Rayleigh Distribution	132
5.5		137
5.6	Continuous Markov Processes. The Einstein-Fokker-Planck	
	Equation	144
5.7	Generalization to Multivariate Random Functions	152
5.8	Fluctuations in the Thomson Vacuum-Tube Oscillator	158
5.9	Fluctuations at Large Self-Oscillation Amplitudes	168
5.10	Rotational Brownian Motion. Random Refraction of a Ray	175
5.11	Stepwise Markov Processes. The Kolmogorov-Feller Equation	180
5.12	First Passage Problem	186
5.13	Exercises	192
6. Sto	chastic Differential Equations	207
6.1	Statement of the Problem	208
6.2	Random Functions with Independent Increments	209
6.3	Simple Example of a Stochastic Differential Equation	213
6.4	General Case of First-Order Equations and a Set of Such	
	Equations for Gaussian Delta-Correlated Action	220
6.5	Stochastic Equation for Random Actions with Arbitrary	•
	Distribution Laws	227
6.6	Exercises	234
Kefere	nces	245
GL!	A Ta Jan	
enolec	t Index	249