CONTENTS

	Page
Foreword	v vii
Electromagnetic theory and geometrical optics MORRIS KLINE, Institute of Mathematical Sciences, New York University	3
Fields excited in a receiving-type antenna F.J. TISCHER, Ohio State University	33
The pulse solution connected with the Sommerfeld problem for a dipole in the interface between two dielectrics HENDRICUS BREMMER, Philips Research Laboratories,	
Eindhoven, Netherlands	39
The mathematical foundations of diffraction theory CALVIN H. WILCOX, California Institute of Technology	65
Function-theoretic aspects of diffraction theory ALBERT E. HEINS, University of Michigan	99
Abstract operator methods in electromagnetic diffraction N. MARCUVITZ, Microwave Research Institute, Polytechnic Institute of Brooklyn	109
Diffraction by polygonal cylinders JOSEPH KELLER, Institute of Mathematical Sciences, New York University	129
A mathematical model for diffraction by convex surfaces N. A. LOGAN and K. S. YEE, Missile Systems Division, Lockheed Aircraft Corp., Sunnyvale, California	139

xii	Contents
The quasi-static radar cross sections of complex bodies of radiation	Page
KEEVE M. SIEGEL, The Radiation Laboratory, University of Michigan	. 181
Dipoles in a dissipative media RONOLD W.P. KING, Harvard University	. 199
The propagation of electromagnetic waves along the earth's surface JAMES R. WAIT, National Bureau of Standards	. 243
Far field amplitudes and inverse diffraction theory SAMUEL N. KARP, Institute of Mathematical Sciences, New York University	. 291
Propagation in a non-homogeneous medium BERNARD FRIEDMAN, Department of Mathematics, University of California, Berkeley	. 301
Some characteristics of electromagnetic wave beams GEORG GOUBAU, U.S.Army Signal Research & Developm Laboratory, Fort Monmouth, New Jersey	
Integral equation perturbation methods in low-frequency diffraction B. NOBLE, The Royal College of Science and Technology Glasgow, Scotland	, 323
Scattering of waves by two objects VICTOR TWERSKY, Sylvania Electronic Defense Laborator Mountain View, California	ries, . 361