Contents

A. Overview of Geodetic Refraction Studies F.K. BRUNNER (With 1 Figure)

1.	Introduction	1
2.	The Challenge	2
3.	Organisation	4
Ref	ferences	6

B. Two Wavelength Angular Refraction Measurement D.C. WILLIAMS and H. KAHMEN (With 11 Figures)

1. Introduction	7
2. Theory of the Method	8
2.1 The Refraction Integral	9
2.2 Refraction Magnitudes	10
2.3 The Two Wavelength Relationship	12
2.4 Consideration of Water Vapour	13
3. Instrumental Methods	15
3.1 Instrumental Approaches	16
3.2 Khvostikov	16
3.3 Tengström	17
3.4 Vshivkov and Shilkin	19
3.5 Startsev and Tukh	20
3.6 Brein and Glissmann	21
3.7 Dyson and Williams	22
3.8 Astheimer and McHenry	23
3.9 Mikhailov	24
4. Concluding Discussion	26
4.1 Future Prospects	26
4.2 Refraction Elimination	27
Appendix: Notation	27
References	28

C. Effects of Atmospheric Turbulence on Geodetic Interference Measurements: Methods of its Reduction M.T. PRILEPIN and A.S. MEDOVIKOV (With 2 Figures)

1.	Inti	coduction	33
2.	Sigr	nal-to-Noise Ratio	33
	2.1	General Remarks	33
	2.2	Symmetrical Interferometer with Similar and	
		Completely Correlated Fluctuations in Both Beams	35
	2.3	Symmetrical Interferometer with Similar but	
		Partially Correlated Fluctuations	35

 2.4 Interferometers with the Reference Arm without Fluctuations 2.5 Discussion 3. Angle-of-Arrival Fluctuation: Estimation of the Effect 4. Linear Interference Measurements: Fluctuation Effect and its Reduction Appendix: Notation References 	36 36 37 39 42 43
D. Multiple Wavelength Electromagnetic Distance Measurement J. LEVINE (With 1 Figure)	
 Introduction Instrument Design - General Principles Instrument Design - Engineering Tradeoffs Proposed Instrument Design Current Instrument References 	45 46 47 50 50 51
E. Water Vapor Radiometry in Geodetic Applications G.M. RESCH (With 14 Figures)	
 Introduction	53 55 59 67 73 80 81 82
F. Temperature and Humidity Structure in the Lower Atmosphere E.K. WEBB (With 18 Figures)	
 3.4 Magnitude of Temperature and Humidity Fluctuations 3.5 Spectrum and Structure Function 4. The Atmospheric Boundary Layer 4.1 Broad Character 4.2 Convective Boundary Layer 4.3 Stable Boundary Layer 5. Surface Complexities 5.1 Introduction 5.2 Small-Scale Adjustment or "Local Advection" 5.3 Sea Breeze 5.4 Hill-Valley Effects 	85 86 87 93 100 104 116 116 116 124 129 129 129 129 130
Notation	131 132

VIII

 4.2 Rectification Model
 152

 4.3 Operational Model
 155

 4.4 Discussion
 156

 5. Model Evaluation
 156

 6. Conclusion
 158

 Appendix A: Notation
 159

 References
 160

H. Refraction in Geodetic Levelling P.V. ANGUS-LEPPAN (With 1 Figure)

1. Introduction	163
2. Investigations of Refraction by Kukkamäki	164
3. General Equation for Levelling Refraction	167
4. Temperature Gradient in the Atmospheric Boundary Layer	168
5. The Holdahl Model for Levelling	169
6. National Geodetic Survey Tests	170
7. Investigations using Angus-Leppan Equations	171
8. Statistical Analysis	173
9. Systematic and Random Effects	176
10. Conclusions	176
Appendix: Notation	178
Bibliography	179

I. Atmospheric Refraction Effects in Time and Latitude Observations Using Classical Techniques I. NAITO and C. SUGAWA

1. Introduction	181
2. Expressions for Astronomical Refraction	182
3. Refraction Problems in VZT, PZT and Astrolabe	
Observations	183
4. Actual Atmospheric Structure	184
5. Refraction Effects and Meteorological Improvements for	
Their Corrections	
6. Concluding Remarks	187
References	187

J. The Equations of Electromagnetic Wave Propagation in a Refractive Medium Corotating with the Earth E.W. GRAFAREND

1.	Introduction	189
2.	The Variational Problem	189
	2.1 Euler-Lagrange Equations	189
	2.2 The Hamiltonian Complex	190
	2.3 Invariant Postulates	191
	2.4 Examples	192

143

145

147

150 150

3. The Variational Principle of the Wave Equations in	
an Electromagnetic Medium	195
3.1 The Faraday-Maxwell Tensors	195
3.2 Linear Constitutive Equations	197
3.3 The Variational Principles of the Wave Equation	198
4. A Discussion of the Wave Equation in an Earth-Fixed	
Frame	199
4.1 The Set of Wave Equations in a Medium at Rest in	
an Inertial Frame	199
4.2 The Set of Wave Equations in a Medium Corotating	
with the Earth	201
4.3 Examples	204
Appendix A: Notation	205
Appendix B: The Formal Structure of Electromagnetism	207
References	208
	200
Subject Index	209

х