Contents

Preface XI
Chapter 1. Introducing reflection 1
1-1 The electromagnetic s wave 1
1-2 The electromagnetic p wave 5
1-3 Particle waves. 10
1-4 Acoustic waves 13
1-5 Scattering and reflection 17
1-6 A look ahead 20
Chapter 2. Exact results 33
2-1 Comparison identities, and conservation and reciprocity laws 33
2-2 General expressions for r_{s} and r_{p}. 38
2-3 Reflection at grazing incidence, and the existence of a Brewster angle 42
2-4 Reflection by a uniform layer 44
2-5 Other exactly solvable profiles 50
Chapter 3. Reflection of long waves 61
3-1 Integral equation and perturbation theory for the s wave 61
3-2 The s wave to second order in the interface thickness. 64
3-3 Integral invariants 66
3-4 $\left|r_{p}\right|^{2}$ and r_{p} / r_{s} to second order 68
3-5 Reflection by a thin film between like media. 71
3-6 Six profiles and their integral invariants. 73
Chapter 4. Variational theory 77
4-1 A variational expression for the reflection amplitude 77
4-2 Variational estimate for r_{s} in the long wave case 79
4-3 Exact, perturbation and variational results for the sech ${ }^{2}$ profile. 80
4-4 Variational theory for the p wave 83
4-5 Reflection by a non-uniform layer between like media 85
4-6 The Hulthén-Kohn variational method applied to reflection. 89
4-7 Variational estimates in the short wave case 90

Contents

Chapter 5. Equations for the reflection amplitudes 93
5-1 A first order non-linear equation for an s wave reflection coefficient 93
5-2 An example: reflection by the linear profile 95
5-3 Differential equation for a p wave reflection coefficient 97
5-4 Upper bounds on R_{s} and R_{p} 98
5-5 Long wave approximations 101
5-6 Differential equations for the reflection amplitudes 103
5-7 Weak reflection: the Rayleigh approximation 104
5-8 Iteration of the integral equation for r 106
Chapter 6. Reflection of short waves 109
6-1 Short wave limiting forms for some solvable profiles 109
6-2 Approximate waveforms 113
6-3 Profiles of finite extent with discontinuities in slope at the endpoints 115
6-4 Reflection amplitude estimates from a comparison identity 118
6-5 Perturbation theory for short waves 121
6-6 Short wave results for r_{p} and r_{p} / r_{s} 124
6-7 A single turning point: total reflection 129
6-8 Two turning points, and tunnelling. 134
Chapter 7. Anisotropy 141
7-1 Anisotropy with azimuthal symmetry 141
7-2 Ellipsometry off a thin film on an isotropic substrate 144
7-3 Thin film on an anisotropic substrate. 147
7-4 General results for anisotropic stratifications with azimuthal symmetry 148
7-5 Differential equations for the reflection amplitudes 149
7-6 Reflection from the ionosphere 151
Chapter 8. Absorption 155
8-1 Fresnel reflection formulae for an absorbing medium 156
8-2 General results for reflection by absorbing media 160
8-3 Dielectric layer on an absorbing substrate 161
8-4 Absorbing film on a transparent substrate. 162
8-5 Thin non-uniform absorbing films 164
8-6 Attenuated total reflection; surface waves 168
8-7 Reflection by a diffuse absorbing interface: the tanh profile 176
Chapter 9. Inverse problems. 179
9-1 Reflection at a sharp boundary 180
9-2 Uniform film between like media 182
9-3 Synthesis of a profile from r as a function of wavenumber 184
Chapter 10. Pulses, finite beams 191
10-1 Reflection of pulses: the time delay 191
10-2 Phase change on total internal reflection 194
10-3 Reflection of beams: the lateral beam shift 199

Contents

Chapter 11. Rough surfaces 205
11-1 Reflection from rough surfaces: the Rayleigh criterion 205
11-2 Corrugated surfaces: diffraction gratings 206
11-3 Scattering of light by liquid surfaces. 211
11-4 The surface integral formulation of scattering by rough surfaces 215
Chapter 12. Matrix methods 221
12-1 Matrices relating the coefficients of linearly independent solutions 221
12-2 Matrices relating fields and their derivatives 224
12-3 Periodically stratified media 228
12-4 Multilayer dielectric mirrors 230
12-5 Reflection of long waves 234
12-6 Absorbing stratified media: some general results 236
12-7 High transparency of an absorbing film in a frustrated total reflection configuration 238
Chapter 13. Numerical methods 241
13-1 Numerical methods based on the layer matrices. 242
13-2 Variable step size, profile truncation, total reflection and tunnelling, absorption, and calculation of wavefunctions 246
Appendix. Reflection of particle waves 249
A-1 General results 249
A-2 Some exactly solvable profiles. 252
A-3 Perturbation and variational theories 257
A-4 Long waves, integral invariants 259
A-5 Riccati-type equations; the Rayleigh approximation 261
A-6 Reflection of short waves 262
A-7 Absorption, the optical potential 264
A-8 Inversion of a model reflection amplitude 267
A-9 Reflection of wavepackets 268
Author index 273
Subject index 277

