Contents

۰.

Preface	ix
Chapter 1. Historical Introduction	
1.1. Conventional wave-guides	I
1.2. Early experiments and theories for radio waves	2
1.3. Anomalous radar ranges and tropospheric ducts	3
1.4. The phase integral method	3
1.5. Diffraction round a curved earth	4
1.6. Radio atmospherics	5
1.7. Guided sound waves	6
1.8. The plan of this book	8
Chapter 2. Some Fundamental Ideas	
2.1. Introduction	II
2.2. Notation and units for electromagnetic waves	11
2.3. Maxwell's equations. Constitutive relations	12
2.4. Plane waves in free space	13
2.5. Plane waves in an isotropic medium	15
2.6. Inhomogeneous plane waves	17
2.7. The basic equations for sound waves	18
2.8. Plane harmonic sound waves	19
2.9. Inhomogeneous plane sound waves	20
Examples on Chapter 2	21
Chapter 3. Wave-guides with perfectly reflecting walls	
3.1. Introduction	22
3.2. Synthesis of a TE mode from two crossing plane waves	22
3.3. The wave velocity and the "cut-off" frequency	24
3.4. Evanescent modes	26
3.5. The complex θ -plane for TE modes	27
3.6. Synthesis of a TM mode from two crossing plane waves	29
3.7. Properties of TM modes	30
3.8. The zero order mode	33
3.9. Curves of attenuation versus frequency	34
3.10. The complex θ -plane for TM modes	34
3.11. Comparison of electromagnetic waves and sound waves	35
3.12. Sound wave-guide with perfectly rigid walls	36
3.13. Sound wave-guide with perfectly free boundaries	37
3.14. Sound wave-guide with one free and one rigid boundary	38
Chapter 4. Sources of waves	
4.1. Introduction	41
4.2. The Herizian dipole	4 I
4.3. The Hertz vectors U and V	42
4.4. Sources of sound	45
4.5. Comparison of different point sources. Quadrupoles	47
v	

•

CONTENTS 2 1 1

4.6.	Line sources of sound and cylindrical sound waves	48
4.7.	Line sources of electromagnetic waves	50
	Angular spectrum of plane waves	52
	Spherical and cylindrical waves	53
4.10.	Conical waves	57
	'The "diffraction grating" formed by the source and its	
•	images	59
4.12.	The excitation factor for radio waves	60
	The excitation factor for sound waves	65
	The excitation factor for extended sources	67
	Examples on Chapter 4	68
Chapter	5. The impulse response for guides with perfectly reflecting walls	
5.1.	Introduction	69
5.2.	The group velocity	69
5-3-	Methods of finding an impulse response	70
5.4.	The impulse response for an idealized lightning flash	73
5-5-	'The "ideal" explosion and its impulse response	77
	Properties of the impulse response	78
	Addition of all the modes; qualitative discussion	82
5.8.	Addition of the modes. Theory	83
-	Examples on Chapter 5	86
Chapter	6. Reflection at a sharp boundary	
б. т .	Introduction	87
6.2.	Snell's law and the critical angle	87
6.3.	Critical branch cuts and critical lines	89 89
6.4.	The Fresnel reflection coefficients	91 1
6.5.	Behaviour of the reflection coefficients in the complex	
	8-plane	92
6.6.	The line $ R = t$	94
6.7.	The Brewster angle	96
6.8.	The impulse response of a reflection	97
6.9.	Sharply bounded anisotropic medium	99
	Examples on Chapter 6	100
Chapter	7. Reflection from stratified media	
7.1.	Introduction	102
7.2.		102
7.3.	Phase memory and W.K.B. solutions	104
7.4.	The reference level for reflection coefficients	107
7.5.	Reflection in a slowly varying medium	108
7.6.	The use of the phase integral formula	110
7.7.	Other methods of finding reflection coefficients	114
Chapter		
8.1.	Introduction	115
8.2.	The condition for a self-consistent mode	115
8.3.		116
	Use of the complex θ -plane	118
	Extension of the diffraction grating picture	119
8.6.	Modes of negative order	121

vi

CONTEN	18	vi
Chapter	9. TM modes for a sharply bounded ionosphere	
9.1.	Introduction	124
9.2.	Forms of the mode equation	124
9.3.	The curve $ R \exp(-2ikh \sin \theta) = 1$ for TM modes	125
9.4.	Loss free ionosphere	128
9.5.	Locked, open and leaky modes	131
9.6.	The ionosphere at very low frequencies	136
9.7.	The numbering of the modes	137
9.8.	Effect of the earth's curvature	140
9.9.	The ionosphere at very low frequencies (continued)	142
9.10.	The least attenuated mode	144
9.11.	The impulse response	146
9.12.	Anisotropic ionosphere	149
9.13.	Comparison of the "mode" and "ray" methods	151
9.14.	The Austin-Cohen formula	152
Chapter	10. Sound waves in water with sharply bounded bottom	_
10.1.	Introduction	154
10.2.	The curve $ R \exp(-2i\hbar k \sin \theta) = 1$	155
10.3.	The locked modes	156
10.4.	Dispersion in the first order mode	158
10.5.	The impulse response of the first order mode	161
-	The ground wave	165
10.7.	The water wave	167
10.8.	The Airy phase	170
10.9.	The effect of combining several modes	172
Chapter	11. Locked modes in a stratified system	
11.1.	Introduction	174
11.2.	The refractive index of the troposphere	175
	Linear decrease of refractive index. Horizontal polarization	175
11.4.	Linear decrease of refractive index. Vertical polarization	183
	Other profiles giving locked modes	18
11.6.	The excitation factor for locked modes	180
11.7.	Elevated ducts	190
11.8.	Sound waves in water whose temperature varies with	-
	depth	200
11.9.	Whispering galleries	20
	Radio echoes of long delay	204
-	12. Attenuated modes in a continuous stratified system	
12.1.	Introduction	20
12.2.	Diffraction of radio waves round the earth	20
12.3.	The "height-gain" functions for radio waves diffracted round the earth	212
12.4.		
:	troposphere	215
12.5.	The excitation factor for leaky modes	. 219
12.6.	Discussion of diffraction round the earth	222
12.7.		22
12.8.	Anisotropic ionosphere with gradual boundary	230

/iii CON	FENTS
12.9. Numerical methods for studying modes in the troposphere	23I
Examples on Chapter 12	232
Chapter 13. Surface waves	
13.1. Introduction	233
13.2. The Zenneck wave	233
13.3. Vertical dipole aerial above flat conducting plane	236
13.4. The ray theory approximation	238
13.5. The effect of poles in the reflection coefficient function	238
13.6. Diffraction of the Zenneck wave by an opaque screen	240
13.7. The "edge-wave" approximation	244
13.8. The region where ray theory is inapplicable	246
13.9. Boundary surface with real critical angle	247
13.10. The "Head" wave or "Flank" wave	249
13.11. Other kinds of surface wave	253
Chapter 14. Some mathematical developments	
14.1. Introduction	254
14.2. Fields of a line source and its images, for radio waves	254
14.3. The residue series for radio waves	257
14.4. Discussion of the residue series	259
14.5. The residue series for sound waves	262
14.6. The integral round the branch cut, for radio waves	264
14.7. The integral round the branch cut, for sound waves	266
14.8. The effect of a pole near the saddle point	268
14.9. The use of Mittag-Leffler's theorem	268
14.10. Modes of negative order	270
Chapter 15. The effect of the earth's curvature	
15.1. Introduction	273
15.2. The differential equations in spherical polar coordinates	275
15.3. The angular part of the solution	276
15.4. The radial part of the solution	279
15.5. Solution of the radial equation using Airy integral functions	280
15.6. Asymptotic approximations and the phase integral method	282
15.7. The reflection coefficients for curved boundaries	285
15.8. Modes between two spherical perfect conductors	286
15.9. Some numerical examples for perfect spherical conductors 15.10. Numerical methods for the equations in spherical co-	288
ordinates	290
15.11. Numerical methods using the method of the modified refractive index	
	292
Appendix A. Sommerfeld's integrals for Bessel functions	
A.I. Hankel functions of zero order	294
A.2. Angular spectrum of plane waves	296
A.3. Hankel functions of order one	298
Appendix B. Spherical wave as an angular spectrum of plane waves	301
Appendix C. An integral transform	304
Bibliography	306
index of definitions of the more important symbols	314
Index	318