Table of Contents

			Page			
Su	mmary		. 3			
Dustana						
T 10	ITELACE					
1.	Electron	orbits in a magnetic field of hyperbolic character	. 7			
	1.1.	Introduction	. 7			
	1.2.	The general motion	. 11			
	1.2.1.	The vector potential	. 11			
	1.2,2,	The Hamiltonian	. 11			
	1.2.3.	Constants of motion	. 12			
	1.2.4.	The scalar potential ψ	. 12			
	1.2.5.	Calculation of the vector potential	. 14			
	1,2.6.	The magnetic field	. 17			
	1.2.7.	Accessible regions. Dimensionless parameters	. 17			
	1.3.	Plane motion	. 19			
	1.3.1.	Simple relations	. 19			
	1.3.2.	The equation of motion	. 22			
	1.3.3.	Approximate solution	. 22			
	1.3.4.	Qualitative discussion of the orbits	. 24			
	1.3.5.	The drift velocity	. 26			
	1.4.	Stability	. 26			
	1.4.1.	Qualitative discussion of stability	. 26			
	1.4.2.	Quantitative discussion	. 27			
2.	Theoretics	l and experimental investigation of meander orbits without	÷			
	10010000	and with interaction with a hf electric field	U 91			
	9.1	Weaking principle of the mean day take	. 91			
	2,1. 9 0	Formations of the electron motion	. ()1 99			
	4.2. 9 9	Numerical coloriations of orbits	. 33 94			
	2.3. 9 A	Remainsantal tasks	. 34			
	4.4. 9 K		. 30			
	2.J. 9 R		. 40			
	2.7	Comparison between theoretical and amerimental data	· 44			
	2.9	Floatron orbits with hf field	. 40			
	2.9.	Numerical calculation of electron orbits with hf field	· 40			
3.	Microwave	e meander tubes	. 59			
	3.1.	Construction	. 59			
	3.2.	Operation	. 60			
	3.3.	A pulsed meander tube	. 62			
	3.4.	Measurements of the magnetic field	. 63			
	3.5.	Experimental results	. 64			

			Page
4.	Measurem	ents on a meander tube at 50 cm wave length	. 67
	4.1:	The experimental tube	. 67
	4.2.	Survey measurements on the meander tube at 50 cm wave lengt	b. 68
	4.3.	A secondary emission discharge	. 71
	4.4.	Influence of space charge and ions	. 72
	4.5.	Electronic tuning	. 74
5.	General di	iscussion of the meander tube based on energy phase diagrams	. 81
	5.1.	Conditions for efficient sorting out	. 81
	5.2.	Construction of energy-phase diagrams	. 82
	5.3.	Conclusions from the energy-phase diagrams	. 84
	5.4.	Other types of magnetic field	. 85
	5.5.	Upper frequency limitations of the meander tube	. 88
6.	References		. 90