CONTENTS

I. INTRODUCTION	1
1.1. Defining a 'surface wave'	4
II. CONDITIONS FOR THE SUPPORT OF SURFACE WAVES AT AN INTERFACE BETWEEN TWO DIFFERENT HOMO-	
GENEOUS MEDIA	6
2.1. Field components	6
2.1.1. The inhomogeneous plane wave, or Zenneck wave	6
2.1.2. The radial cylindrical surface wave	10
2.1.3. The axial cylindrical surface wave	12
2.2. Surface impedance	15
2.2.1. The plane Zenneck wave and the radial cylindrical wave	17
2.2.2. The axial cylindrical wave	20
2.3. Propagation coefficients and phase velocity outside the surface	23
2.3.1. Waves supported by flat surfaces	25
2.3.2. The axial cylindrical wave	25
III. THE SIGNIFICANCE OF THE BREWSTER ANGLE IN RELATION TO SURFACE WAVES	29
IV. THE TILT OF THE EQUI-PHASE SURFACES AND THE EVANESCENT STRUCTURE OF THE ZENNECK WAVE IN THE TRANSVERSE PLANE	34
V. POWER CARRIED BY SURFACE WAVES	38
5.1. The Zenneck wave	38
5.2. The axial cylindrical wave	38
VI. NUMERICAL CALCULATIONS TO ILLUSTRATE THE	
BEHAVIOUR OF SURFACE WAVES	42
6.1. Zenneck waves	42
6.1.1. Unloaded metal surface	42
6.1.2. Loaded metal surface	42
6.1.3. Sea water surface	43 44
6.2. Axial cylindrical wave supported by a bare copper wire	44
VII. THE AZIMUTHAL SURFACE WAVE SUPPORTED BY A CYLINDRICAL SURFACE	46
7.1. Calculation for the power radiated	48
7.2. Calculation for the surface impedance	49
7.3. Calculation for the power circulating around the cylindrical surface and its rate of attenuation	51
7.4. The effect on the power radiated of a field 'reflected' outside the supporting surface	53
7.5. The effect of losses in the supporting surface	54

x CONTENTS

VIII. OTHER TYPES OF SURFACE WAVE	58
8.1. H-modes over a plane reactive surface	58
8.2. Surface-wave modes supported by circular cylinders	60
8.2.1. General results	60
8.2.2. Results for particular structures	69
8.3. Miscellaneous surface waves	78
IX. THE EXCITATION OF SURFACE WAVES	77
9.1. General considerations applying to launchers for the Zenneck way	
9.2. Electromagnetic fields as plane-wave spectra	
9.3. A general expression for the amplitude of a surface wave	79
9.4. Launching efficiency	82 85
9.5. Reception of a surface wave	87
9.6. Reception of a radiated wave	9(
X. APERTURE TYPE LAUNCHERS	92
10.1. Launching of Zenneck waves	93
10.1.1. Cullen's solution	93
10.1.2. Booker-Clemmow solution	96
10.1.3. Comparison of results	101
10.2. Launching efficiency	104
10.2.1. Power transmitted by surface wave	104
10.2.2. Radiated power	105
10.2.3. Alternative derivation of the total power passing through aperture	$^{ m the}$
10.3. Numerical results	108
10.3.1. Slot launchers	108
10.3.2. Aperture launchers	113
10.3.3. Experimental results	114
XI. IMPEDANCE CONDITIONS IN RELATION TO SURFA WAVE LAUNCHERS	.CE- 117
11.1. Calculation of the stored energy	118
11.2. The design of a wide-band launcher	120
11.3. Calculation of the input impedance of a surface-wave launcher	126
XII. RADIATION AT DISCONTINUITIES	137
12.1. Radiation at a reactance discontinuity	137
12.1.1. Theoretical analysis	137
12.1.2. Discussion of the solution	140
12.2. Approximate methods for estimating the effect of a discontinuity	140
12.3. Some approximate solutions	146
12.3.1. Bends and corners	146
12.3.2. The effect of a thin conducting strip	149
XIII. APPLICATION OF SURFACE WAVES	
13.1. Transmission systems	151
13.1. Transmission systems 13.2. Surface-wave aerials	151
13.2.1. General description	155
13.2.2. Control of radiation from surface-wave aerials	155 161
13.2.3 Wayes on surfaces with modulated reactance	167

CONTENTS	хi
APPENDIXES	
1. Generalization of the Fourier cosine transform	171
2. Integration contours required in Section 10.1.3	173
3. Wiener-Hopf methods	176
REFERENCES	187
NAME INDEX	197
SUBJECT INDEX	199