CONTENTS

331,111,15	
PREFACE	AGE V
CHAPTER I	
THE FIELD THEORY OF ELECTROMAGNETISM	
Introduction	1
1. The Force on a Charge	10
2. The Field of a Distribution of Static Point Charges	11
3. The Potential	14
4. Electric Images	16
Problems	17
CHAPTER II	
ELECTROSTATICS	
Introduction	19
1. Gauss's Theorem	19
2. Capacity of Condensers	21
3. Poisson's Equation and Laplace's Equation	23
4. Green's Theorem, and the Solution of Poisson's Equation in an Unbounded	
Region	24
5. Direct Solution of Poisson's Equation	26
Problems	27
CHAPTER III	
SOLUTIONS OF LAPLACE'S EQUATION	
Introduction.	29
1. Solution of Laplace's Equation in Rectangular Coordinates by Separation	_0
of Variables	2 9
2. Laplace's Equation in Spherical Coordinates	31
3. Spherical Harmonics	32
4. Simple Solutions of Laplace's Equation in Spherical Coordinates	34
5. The Dipole and the Double Layer	35
6. Green's Solution for a Bounded Region	3 8
Problems	3 9
CHAPTER IV	
DIELECTRICS	
Introduction.	41
1. The Polarization and the Displacement	42
2. The Dielectric Constant	43

3. Boundary Conditions at t	he Surface of a Dielectric
•	volving Dielectrics, and the Condenser
	infinite Dielectric Slab
•	iform Field
•	shaped Cavities
	CHAPTER V
	TIC FIELDS OF CURRENTS
2. The Magnetic Field of a l	Linear and a Circular Current
3. The Divergence of B, and	the Scalar Potential
4. The Magnetic Dipole	
5. Ampère's Law	
6. The Vector Potential	
Problems	
3.5	CHAPTER VI
	AGNETIC MATERIALS
	r
-	
•	Involving Magnetic Media
•	here in an External Field
· ·	
Problems	· · · · · · · · · · · · · · · · · · ·
	CHAPTER VII
ELECTROMACNETIC I	INDUCTION AND MAXWELL'S EQUATION
	etic Induction.
•	
z. pen- and mutual munch	<i>1</i> 11
	1
3. The Displacement Curren	
3. The Displacement Current. 4. Maxwell's Equations.	
 The Displacement Current Maxwell's Equations. The Vector and Scalar Po 	tentials
 The Displacement Current Maxwell's Equations. The Vector and Scalar Po 	
 The Displacement Current Maxwell's Equations. The Vector and Scalar Po 	tentials
 The Displacement Current Maxwell's Equations. The Vector and Scalar Populations. Problems. 	tentials
 The Displacement Current Maxwell's Equations. The Vector and Scalar Populations. Problems. 	CHAPTER VIII NETIC WAVES AND ENERGY FLOW
3. The Displacement Curren 4. Maxwell's Equations 5. The Vector and Scalar Po Problems ELECTROMAGN Introduction	CHAPTER VIII NETIC WAVES AND ENERGY FLOW

CONTENTS	i
3. Electric and Magnetic Energy Density 9	
4. Poynting's Theorem and Poynting's Vector	
5. Power Flow and Sinusoidal Time Variation	-
6. Power Flow and Energy Density in a Plane Wave	
Problems	_
CHAPTER IX ELECTRON THEORY AND DISPERSION	
	_
1. Dispersion in Gases	-
2. Dispersion in Liquids and Solids	
3. Dispersion in Metals	
4. The Quantum Theory and Dispersion	
Problems	4
Chapter X	
REFLECTION AND REFRACTION OF ELECTROMAGNETIC WAVES	
Introduction	7
1. Boundary Conditions at a Surface of Discontinuity	7
2. The Laws of Reflection and Refraction	8
3. Reflection Coefficient at Normal Incidence	9
4. Fresnel's Equations	0
5. Total Reflection	3
6. Damped Plane Waves, Normal Incidence	
7. Damped Plane Waves, Oblique Incidence	
Problems	
Chapter XI	
WAVE GUIDES AND CAVITY RESONATORS	
Introduction	a
1. Propagation between Two Parallel Mirrors	-
2. Electromagnetic Field in the Wave Guide	
3. Examples of Wave Guides	
4. Standing Waves in Wave Guides	
5. Resonant Cavities	
Problems	
1100101115	U
CHAPTER XII	
SPHERICAL ELECTROMAGNETIC WAVES	
Introduction	8
1. Maxwell's Equations in Spherical Coordinates	3
2. Solutions of Maxwell's Equations in Spherical Coordinates	1

xii	CONTENTS
- m - m	PAGE
_	Dipole
·	ge Distances
	of Light
Problems	
	CHAPTER XIII
HUYGENS' PRIN	CIPLE AND GREEN'S THEOREM
Introduction	
2. Mathematical Formulation of	of Huygens' Principle
3. Integration for a Spherical S	surface by Fresnel's Zones
4. Huygens' Principle for Diffra	action Problems
Problems	
	CHAPTER XIV
FRESNEL AND	FRAUNHOFER DIFFRACTION
	Fraunhofer Diffraction
-	lit
	a Slit
	the Resolving Power of a Lens
	s; the Diffraction Grating
1 topiems	
	Appendix I
	nts
Scalar and Vector Products of	of Two Vectors
	rs
The Divergence Theorem an	d Stokes's Theorem
Problems	
	Appendix II
Units	
	APPENDIX III
Fourier Series	
	Appendix IV
	ar Coordinates
Gradient	

CONTENTS	xiii
Divergence	
Laplacian	222
Curl	222
APPENDIX V	
Spherical Harmonics	224
Appendix VI	
Multipoles	227
APPENDIX VII	
Bessel's Functions	232
Suggested References	235
Index	237
•	