CONTENTS

CHA	PTER 1 STATIONARY ELECTRIC FIELDS	1
1.1	Introduction	1
	BASIC LAWS AND CONCEPTS OF ELECTROSTATICS	2
1.2	Force Between Electric Charges; The Concept of Electric Field	2
1.3	The Concept of Electric Flux and Flux Density; Gauss's Law	6
1.4	Examples of the Use of Gauss's Law	9
1.5	Surface and Volume Integrals; Gauss's Law in Vector Form	13
1.6	Tubes of Flux; Plotting of Field Lines	15
1.7	Energy Considerations; Conservative Property of Electrostatic	
	Fields	17
1.8	Electrostatic Potential: Equipotentials	20
1.9	Capacitance	27
	DIFFERENTIAL FORMS OF ELECTROSTATIC LAWS	28
1.10	Gradient	28
1.11	The Divergence of an Electrostatic Field	30
1.12	Laplace's and Poisson's Equations	35
1.13	Static Fields Arising from Steady Currents	37
1.14	Boundary Conditions in Electrostatics	38
1.15	Direct Integration of Laplace's Equation: Field Between Coaxial	
	Cylinders with Two Dielectrics	42
1.16	Direct Integration of Poisson's Equation: The pn Semiconductor	
	Junction	44
1.17	Uniqueness of Solutions	47

48 48 53 56 58 58 61		
48 53 56 58 58 61		
53 56 58 58 61		
58 58 61		
58 61		
58 61		
61		
68		
68		
70		
70		
71		
75		
79		
82		
82		
86		
0.0		
88		
91		
9 4 96		
96		
98		
99		
100		
104		
104		
106		
107		
111		
111		
113		

х

	Contents	xi
3.2	Voltages Induced by Changing Magnetic Fields	113
3.3	Faraday's Law for a Moving System	116
3.4	Continuity of Charge and the Concept of Displacement Current	119
3.5	Physical Pictures of Displacement Current	120
3.6	Maxwell's Equations in Differential Equation Form	123
3.7	Maxwell's Equations in Large-Scale Form	126
3.8	Maxwell's Equations for the Time-Periodic Case	127
2.0	EXAMPLES OF USE OF MAXWELL'S EQUATIONS	130
3.9	Maxwell's Equations and Plane Waves	130
3.10 2.11	The Ways Equation in Three Dimensions	133
3.12	Power Flow in Electromagnetic Fields—Poynting's Theorem	133
3.12	Povnting's Theorem for Phasors	141
3.14	Continuity Conditions for ac Fields at a Boundary; Uniqueness of	
	Solutions	143
3.15	Boundary Conditions at a Perfect Conductor for ac Fields	146
3.16	Penetration of Electromagnetic Fields into a Good Conductor	147
3.17	Internal Impedance of a Plane Conductor	151
3.18	Power Loss in a Plane Conductor	154
	POTENTIALS FOR TIME-VARYING FIELDS	156
3.19	A Possible Set of Potentials for Time-Varying Fields	156
3.20	The Retarded Potentials as Integrals over Charges and Currents	158
3.21	The Retarded Potentials for the Time-Periodic Case	160
Probl	lems	161
СНА	PTER 4 THE ELECTROMAGNETICS OF CIRCUITS	168
4.1	Introduction	
	THE IDEALIZATIONS OF CLASSICAL CIRCUIT THEORY	169
4.2	Kirchhoff's Voltage Law	169
4.3	Kirchhoff's Current Law and Multimesh Circuits	174
	SKIN EFFECT IN PRACTICAL CONDUCTORS	178
4.4	Distribution of Time-Varying Currents in Conductors of Circular	
	Cross Section	178
4.5	Impedance of Round Wires	180
	CALCULATION OF CIRCUIT ELEMENTS	184
4.6	Self-Inductance Calculations	184
4.7	Mutual Inductance	187
4.8	Inductance of Practical Coils	191
4.9	Self- and Mutual Capacitance	193

4.10 4.11 4.12 <i>Proble</i>	CIRCUITS THAT ARE NOT SMALL COMPARED WITH WAVELENGTH Distributed Effects and Retardation Circuit Formulation Through the Retarded Potentials Circuits with Radiation	196 196 198 203 206
СНА	PTER 5 TRANSMISSION LINES	210
5.1	Introduction	210
	TIME AND SPACE DEPENDENCE OF SIGNALS ON IDEAL TRANSMISSION LINES	211
5.2	Voltage and Current Variations Along an Ideal Transmission	
	Line	211
5.3	Relation of Field and Circuit Analysis of Transmission Lines	215
5.4	Reflection and Transmission at a Resistive Discontinuity	216
	SINUSOIDAL WAVES ON IDEAL TRANSMISSION LINES WITH DISCONTINUITIES	223
5.5	Reflection and Transmission Coefficients and Impedance and	
	Admittance Transformations for Sinusoidal Voltages	223
5.6	Standing-Wave Ratio	226
5.7	The Smith Transmission-Line Chart	229
5.8	Purely Standing Wave on an Ideal Line	238
	NONIDEAL TRANSMISSION LINES	241
5.9	Power Loss and Attenuation in Low-Loss Lines	241
5.10	Input Impedance and Quality Factor for Resonant Transmission	
	Lines	243
5.11	Transmission Lines with General Forms of Distributed	
	Impedances; $\omega - \beta$ Diagram	247
5.12	Group and Energy Velocities	254
5.13	Backward Waves	257
5.14 5.15	Iransmission Lines Used with Pulses	258
5.15	nonumorm rransmission Lines	201
Problems 263		

CHAPTER 6 PLANE WAVE PROPAGATION AND REFLECTION

6.1	Introduction	270
	PLANE WAVE PROPAGATION	271

270

xii

	Contents	xiii
6.2	Uniform Plane Waves in a Perfect Dielectric	271
6.3	Polarization of Plane Waves	276
6.4	Waves in Imperfect Dielectrics and Conductors	279
	PLANE WAVES NORMALLY INCIDENT ON	
	DISCONTINUITIES	283
6.5	Reflection of Normally Incident Plane Waves from Perfect	
	Conductors	283
6.6	Transmission-Line Analogy of Wave Propagation: The	
	Impedance Concept	285
6.7	Normal Incidence on a Dielectric	288
6.8	Reflection Problems with Several Dielectrics	291
	PLANE WAVES OBLIQUELY INCIDENT ON	
	DISCONTINUITIES	296
6.9	Incidence at Any Angle on Perfect Conductors	296
6.10	Phase Velocity and Impedance for Waves at Oblique Incidence	299
6.11	Incidence at Any Angle on Dielectrics	302
6.12	Total Reflection	306
6.13	Polarizing or Brewster Angle	308
6.14	Multiple Dielectric Boundaries with Oblique Incidence	309
Problems		312

CHAPTER 7 TWO- AND THREE-DIMENSIONAL BOUNDARY VALUE PROBLEMS

7.1 Introduction 317 THE BASIC DIFFERENTIAL EQUATIONS AND NUMERICAL METHODS 318 7.2 Roles of Helmholtz, Laplace, and Poisson Equations 319 7.3 Numerical Solution of the Laplace, Poisson, and Helmholtz Equations 320 METHOD OF CONFORMAL TRANSFORMATION 326 7.4 Method of Conformal Transformation and Introduction to **Complex-Function Theory** 326 7.5 Properties of Analytic Functions of Complex Variables 328 7.6 Conformal Mapping for Laplace's Equation 331 The Schwarz Transformation for General Polygons 7.7 340 7.8 Conformal Mapping for Wave Problems 343 **PRODUCT-SOLUTION METHOD** 346 7.9 Laplace's Equation in Rectangular Coordinates 346

xiv

7.10	Static Field Described by a Single Rectangular Harmonic	349
7.11	Fourier Series and Integral	351
7.12	Series of Rectangular Harmonics for Two- and	
	Three-Dimensional Static Fields	355
7.13	Cylindrical Harmonics for Static Fields	360
7.14	Bessel Functions	364
7.15	Bessel Function Zeros and Formulas	369
7.16	Expansion of a Function as a Series of Bessel Functions	371
7.17	Fields Described by Cylindrical Harmonics	373
7.18	Spherical Harmonics	375
7.19	Product Solutions for the Helmholtz Equation in Rectangular	
	Coordinates	382
7.20	Product Solutions for the Helmholtz Equation in Cylindrical	
	Coordinates	383
Problems		384

CHAPTER 8 WAVEGUIDES WITH CYLINDRICAL CONDUCTING BOUNDARIES

8.1	Introduction	392
	GENERAL FORMULATION FOR GUIDED WAVES	393
8.2	Basic Equations and Wave Types for Uniform Systems	393
	CYLINDRICAL WAVEGUIDES OF VARIOUS CROSS	
	SECTIONS	396
8.3	Waves Guided by Perfectly Conducting Parallel Plates	396
8.4	Guided Waves Between Parallel Planes as Superposition of	
	Plane Waves	402
8.5	Parallel-Plane Guiding System with Losses	405
8.6	Stripline and Microstrip Transmission Systems	407
8.7	Rectangular Waveguides	411
8.8	The TE_{10} Wave in a Rectangular Guide	418
8.9	Circular Waveguides	422
8.10	Higher Order Modes on Coaxial Lines	428
8.11	Excitation and Reception of Waves in Guides	430
	GENERAL PROPERTIES OF GUIDED WAVES	434
8.12	General Properties of TEM Waves on Multiconductor Lines	434
8.13	General Properties of TM Waves in Cylindrical Conducting	
	Guides of Arbitrary Cross Section	438
8.14	General Properties of TE Waves in Cylindrical Conducting	
	Guides of Arbitrary Cross Section	442

	Contents	XV
8.15	Waves Below and Near Cutoff	444
8.16	Dispersion of Signals Along Transmission Lines and Waveguides	446
Problems		449

CHAPTER 9 SPECIAL WAVEGUIDE TYPES 456

9.1	Introduction	456
9.2	Dielectric Slab Guides	457
9.3	Parallel-Plane Radial Transmission Lines	460
9.4	Circumferential Modes in Radial Lines; Sectoral Horns	464
9.5	Duality; Propagation Between Inclined Planes	466
9.6	Waves Guided by Conical Systems	467
9.7	Ridge Waveguide	469
9.8	The Idealized Helix and Other Slow-Wave Structures	471
9.9	Surface Guiding	474
9.10	Periodic Structures and Spatial Harmonics	477
Problems		482

CHAPTER 10 RESONANT CAVITIES

10.1 Introduction 486 Elemental Concepts of Cavity Resonators 10.2 487 **RESONATORS OF SIMPLE SHAPE** 489 10.3 Fields of Simple Rectangular Resonator 489 Energy Storage, Losses, and Q of Simple Resonator 10.4 491 Other Modes in the Rectangular Resonator 10.5 492 10.6 Circular Cylindrical Resonator 495 Wave Solutions in Spherical Coordinates 10.7 498 10.8 Spherical Resonators 502 SMALL-GAP CAVITIES AND COUPLING 504 Small-Gap Cavities 504 10.9 10.10 Coupling to Cavities 507 10.11 Cavity Q and Other Figures of Merit 509 10.12 Cavity Perturbations 512 10.13 Dielectric Resonators 515 Problems 520

CHAPTER 11 MICROWAVE NETWORKS		523
11.1	Introduction	523
11.2	The Network Formulation	525
11.3	Conditions for Reciprocity	528
	TWO-PORT WAVEGUIDE JUNCTIONS	530
11.4	Equivalent Circuits for a Two Port	530
11.5	Determination of Circuit Parameters by Measurement	532
11.6	Scattering and Transmission Coefficients	535
11.7	Scattering Coefficients by Measurement	538
11.8	Cascaded Two Ports	538
11.9	Examples of Microwave and Optical Filters	542
	N-PORT WAVEGUIDE JUNCTIONS	547
11.10	Circuit and S-Parameter Representation of N Ports	547
11.11	Directional Couplers and Hybrid Networks	551
	FREQUENCY CHARACTERISTICS OF WAVEGUIDE	
	NETWORKS	555
11.12	Properties of a One-Port Impedance	555
11.13	Equivalent Circuits Showing Frequency Characteristics of One	
	Ports	558
11.14	Examples of Cavity Equivalent Circuits	562
11.15	Circuits Giving Frequency Characteristics of N Ports	566
	JUNCTION PARAMETERS BY ANALYSIS	567
11.16	Quasistatic and Other Methods of Junction Analysis	567
Problems		572

CHAPTER 12 RADIATION

577

12.1	Introduction	577
12.2	Some Types of Practical Radiating Systems	579
	FIELD AND POWER CALCULATIONS WITH CURRENTS ASSUMED ON THE ANTENNA	582
12.3	Electric and Magnetic Dipole Radiators	582
12.4	Systemization of Calculation of Radiating Fields and Power	
	from Currents on an Antenna	586
12.5	Long Straight Wire Antenna; Half-Wave Dipole	589
12.6	Radiation Patterns and Antenna Gain	592
12.7	Radiation Resistance	595
12.8	Antennas Above Earth or Conducting Plane	596
12.9	Traveling Wave on a Straight Wire	598

xvi

	Contents	xvii
12.10	V and Rhombic Antennas	600
12.11	Methods of Feeding Wire Antennas	604
	RADIATION FROM FIELDS OVER AN APERTURE	607
12.12	Fields as Sources of Radiation	607
12.13	Plane Wave Sources	610
12.14	Examples of Radiating Apertures Excited by Plane Waves	612
12.15	Electromagnetic Horns	617
12.16	Resonant Slot Antenna	619
12.17	Lenses for Directing Radiation	621
	ARRAYS OF ELEMENTS	623
12.18	Radiation Intensity with Superposition of Effects	623
12.19	Linear Arrays	627
12.20	Radiation from Diffraction Gratings	631
12.21	Polynomial Formulation of Arrays and Limitations on	
	Directivity	633
12.22	Yagi–Uda Arrays	635
12.23	Frequency-Independent Antennas: Logarithmically Periodic	
	Arrays	637
	FIELD ANALYSIS OF ANTENNAS	640
12.24	The Antenna as a Boundary-Value Problem	640
12.25	Direct Calculation of Input Impedance for Wire Antennas	647
12.26	Mutual Impedance Between Thin Dipoles	650
	RECEIVING ANTENNAS AND RECIPROCITY	652
12.27	A Transmitting-Receiving System	652
12.28	Reciprocity Relations	655
12.29	Equivalent Circuit of the Receiving Antenna	658
Problems		659

CHAPTER 13 ELECTROMAGNETIC PROPERTIES OF MATERIALS

13.1	Introduction	666
	LINEAR ISOTROPIC MEDIA	667
13.2	Characteristics of Dielectrics	667
13.3	Imperfect Conductors and Semiconductors	672
13.4	Perfect Conductors and Superconductors	676
13.5	Diamagnetic and Paramagnetic Responses	679
	NONLINEAR ISOTROPIC MEDIA	680
13.6	Materials with Residual Magnetization	680
13.7	Nonlinear Optics	685

	ANISOTROPIC MEDIA	689
13.8	Representation of Anisotropic Dielectric Crystals	689
13.9	Plane Wave Propagation in Anisotropic Crystals	691
13.10	Plane Wave Propagation in Uniaxial Crystals	695
13.11	Electro-Optic Effects	698
13.12	Permittivity of a Stationary Plasma in a Magnetic Field	703
13.13	TEM Waves on a Plasma with Infinite Magnetic Field	706
13.14	Space-Charge Waves on a Moving Plasma with Infinite	
	Magnetic Field	707
13.15	TEM Waves on a Stationary Plasma in a Finite Magnetic Field	709
13.16	Faraday Rotation	713
13.17	Permeability Matrix for Ferrites	715
13.18	TEM Wave Propagation in Ferrites	719
13.19	Ferrite Devices	721
Problems		726

CHAPTER 14 OPTICS

xviii

14.1	Introduction	732
	RAY OR GEOMETRICAL OPTICS	733
14.2	Geometrical Optics Through Applications of Laws of Reflection	
	and Refraction	733
14.3	Geometrical Optics as Limiting Case of Wave Optics	739
14.4	Rays in Inhomogeneous Media	741
14.5	Paraxial Ray Optics—Ray Matrices	746
14.6	Guiding of Rays by a Periodic Lens Systems or in Spherical	
	Mirror Resonators	749
	DIELECTRIC OPTICAL WAVEGUIDES	752
14.7	Dielectric Guides of Planar Form	752
14.8	Dielectric Guides of Rectangular Form	756
14.9	Dielectric Guides of Circular Cross Section	759
14.10	Weakly Guiding Fibers: Dispersion	762
14.11	Propagation of Gaussian Beams in Graded-Index Fibers	765
	GAUSSIAN BEAMS IN SPACE AND IN OPTICAL	
	RESONATORS	768
14.12	Propagation of Gaussian Beams in a Homogeneous Medium	768
14.13	Transformation of Gaussian Beams by Ray Matrix	771
14.14	Gaussian Modes in Optical Resonators	774
14.15	Stability and Resonant Frequencies of Optical-Resonator Modes	779

	Contents	xix
BASI	S FOR OPTICAL INFORMATION PROCESSING	781
14.16 Fouri	er Transforming Properties of Lenses	781
Problems		784
Appendix 1	Conversion Factors Between Systems of Units	789
Appendix 2	Coordinate Systems and Vector Relations	791
Appendix 3	Sketch of the Derivation of Magnetic Field Laws	797
Appendix 4	Complex Phasors as Used in Electrical Circuits	800
Index		805