CONTENTS | PREFACE | | IX | |-----------|--|----| | CHAPTER 1 | INTRODUCTION AND HISTORICAL PERSPECTIVE | 1 | | | 1.1 Introduction, 1 1.2 Early History of Permanent Magnets, 2 1.3 Growth of the Industry, 5 1.4 Property Improvement and the Changing Pattern of Use, 6 1.5 Raw Material Impact, 10 1.6 A Look Ahead, 12 | | | CHAPTER 2 | MAGNETISM AND THE PERMANENT MAGNET | 15 | | | 2.1 Introduction, 15 2.2 Unit Systems, Definitions, and Conversion Factors, 2.3 The Hysteresis Loop, 19 2.4 Demagnetization Factors and Magnetic Circuit Concepts, 22 2.5 Permanent Magnets and Electromagnetism, 25 2.6 Energy Relationships, 26 2.7 Boundary Conditions and Figures of Merit, 37 | 15 | | CHAPTER 3 | THE PHYSICS OF PERMANENT MAGNETISM AND THE ORIGIN OF PERMANENT MAGNET BEHAVIOR | 43 | | | 3.1 Overview and Perspective, 433.2 The Variations of Magnetic Behavior, 44 | | | | | | | | 3.3 Some Features of Ferromagnetic Materials, 46 3.4 Energy Barriers and Coercive Force, 50 3.5 Single Domain Particle Variables, 54 3.6 Coercivity Mechanisms in Rare-Earth Magnets. 56 3.7 Understanding Magnetization and Demagnetization Processes in Rare-Earth Magnets, 58 | |-----------|--| | CHAPTER 4 | CLASSIFICATION OF PERMANENT MAGNET PROPERTY SYSTEMS AND PROCESSING TECHNOLOGY 61 | | | 4.1 Introduction, 61 4.2 Inclusion Hardened (Early Steel) Magnets, 62 4.3 Fine Particle Magnets Utilizing Shape Anisotropy, 64 4.4 Fine Particle Magnets Utilizing Crystalline
Anisotropy, 74 4.5 Matrix or Bonded Magnets, 97 4.6 Semi-Hard Magnets (Hysteresis Alloys), 97 | | CHAPTER 5 | PERMANENT MAGNET STABILITY 101 | | | 5.1 Introduction, 101 5.2 Classification of Magnetization Changes, 102 5.3 Theoretical Considerations, 104 5.4 Temperature Effects, 106 5.5 Magnetic Field Effects, 121 5.6 Temperature Compensation, 123 5.7 Mechanical Energy Input and Stability, 126 5.8 Corrosion and Surface Oxidation, 128 5.9 Nuclear Radiation, 129 5.10 Enhancing Stability, 129 5.11 Stabilization Techniques, 130 5.12 Conclusions and Comparison of Materials, 133 | | CHAPTER 6 | DESIGN RELATIONSHIPS AND UNIT PROPERTY SELECTION 135 | | | 6.1 Introduction, 135 6.2 Relating Unit Magnetic Properties to Magnet Volume,
Magnet Geometry, and Device Parameters, 137 6.3 Determination of Permeance, 143 6.4 Magnetic and Electrical Circuit Analogy, 165 6.5 Use of High Permeability Materials in Permanent
Magnet Circuits, 173 6.6 Economic Considerations in Design and Property
Selection, 175 | | | 6.7 | Scaling, 179 | 1C | |------------|--|--|-----| | CHAPTER 7 | APP | LICATIONS OF PERMANENT MAGNETS 18 | 83 | | | 7.1
7.2
7.3
7.4
7.5 | Applications Based on Faraday's Law, 194 Applications Based on Lorentz Force Law, 204 | | | CHAPTER 8 | MEA | ASUREMENTS 24 | 48 | | | 8.1
8.2 | · · · · · · · · · · · · · · · · · · · | | | | 8.3 | Measuring Magnetic Fields and Magnetic Potentials, 251 | | | | 8.4 | | 56 | | | 8.5 | ± ' | | | | 8.6 | Instrumentation Systems for Closed Circuit and Hysteresis Loop Measurements, 269 | | | | 8.7 | Search Coil Arrangements and Characteristics, 277 | | | | 8.8 | Special Measuring Techniques for Permanent Magn
Circuit Analysis and Design Optimization, 279 | iet | | * | 8.9 | Calibration, Standards, Precision, and Accuracy, 2 | 80 | | | 8.10 | Measurement Practice in Production Quality
Control, 282 | | | CHAPTER 9 | MAC | GNETIZATION AND DEMAGNETIZATION 28 | 84 | | | 9.1
9.2
9.3
9.4
9.5
9.6 | Theoretical Considerations, 285 Requirements for Complete Magnetization, 289 Equipment and Techniques to Magnetize, 296 Equipment and Techniques to Demagnetize, 303 | | | APPENDIX 1 | | OSSARY OF TERMS, DEFINITIONS, SYMBOLS, ECIFICATIONS, AND STANDARDS | 07 | APPENDIX 2 MAGNETIC AND PHYSICAL PROPERTY TABLES 316 ## viii CONTENTS | APPENDIX 3 | DEMAGNETIZATION CURVES FOR DESIGN ANALYSIS | 322 | |------------|--|-----| | APPENDIX 4 | CHRONOLOGY OF DISCOVERY OF PERMANENT MAGNETS | 331 | | INDEX | | 335 |