目 次

一下 卷一

第14章	非斉次の波動方程式	
14-1	ポテンシャルの波動方程式	273
14.2	Fourier 解析による解	275
14.3	幅 射 場	279
14.4	輻射エネルギー	283
14.5	Hertz のポテンシャル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	288
14.6	Hertz の方法による幅射場の計算	290
14.7	電気双極子の輻射	292
14.8	多重極輻射 multipole radiation	295
14.9	スカラー超ポテンシャルからの多重極輻射の導出	30 0
14-10	多重極子の輻射するエネルギーと角運動量	304
参	: 考 書	306
演	(習問題	306
第15章	特殊相対論の実験場の基礎	
1.5 • 1	Galilei の相対性と電気力学	309
15.2	絶対エーテル系の追求	311
15-3	Lorentz Fitzgerald の仮説	316
15•4	"エーテルのひきずり"	317
15.5	放射理論	319
15-6	要 約	320
*	考 書	323
演	習問題	324

第16章 相対論的運動学と Lorentz 変換	
16・1 光の速度と同時性	325
16.2 特殊相対性と運動学の関係式	327
16·3 Lorentz 変換	334
16-4 Lorentz 変換の幾何学的な解釈	338
16.5 速度の変換式	343
参 考 告	346
演習問題	347
第17章 共変性と相対論的力学	
17·1 4元ベクトル four-vector の Lorentz 変換	
17・2 特殊相対論で有用ないくつかのテンソル関係式	
17・3 運動量の保存	
17・4 エネルギーと運動量、質量の関係	
17·5 Minkowski の力	
17.6 二つの同種粒子の衝突	363
17.7 4元ベクトルを用いた衝突の運動学的関係式の計算	
参 考 告	
演習問題	368
第18章 電気力学の共変形式	
18·1 4元ベクトルポテンシャル	
18・2 電磁場のテンソル	374
18·3 真空中の Lorentz の力	379
18・4 物質媒質のなかの湧き口の共変的な記述	380
18-5 物質媒質のなかの場の方程式	382
18.6 部分場の変換の性質	384
参考 睿	387
演習問題	388

第19章	Liénard-Wiechert ポテンシャルと一様に					
	運動する電子の場					
19·1	Liénard-Wiechert ポテンシャル・・・・・・ 389					
19.2	ー様運動する電荷の場					
19.3	波動方程式の直接の解395					
19•4	"携帯ポテンシャル convection potential"397					
19.5	仮想光子 virtual photon の方法					
\$	多考書402					
演習問題 402						
第20章	加速された電荷からの輻射					
20.1	加速された電荷の場 403					
20-2	おそい速度での輻射 407					
20-3	ů が u に平行な場合					
20.4	加速度が速度に直角であるときの輻射(円軌道からの輻射) 413					
20.5	速度と加速度が任意の場合の輻射					
20.6	Coulomb 場による bremsstrahlung の古典的な断面積 421					
20.7	Čerenkov 輻射······ 423					
3	多考書					
ì	寅習問題 426					
第21章	輻射の反作用と電気力学の保存則の					
	共変的な定式化					
21-1	真空中の電気力学の保存則の共変形式 428					
21.2	"自由な" 輻射場の変換性 430					
21.3	物質媒質のなかの電磁的なエネルギー運動量テンソル 432					
21-4	電磁質量433					
21.5	電磁質量一定性的な考察 435					
21.6	輻射されたエネルギーを保存するために必要な反作用 438					

21	1.7	輻射場の反作用を遅れた場から直接に計算すること	439
21	1-8	運動方程式の性質	442
2	1.9	電荷の電磁場の力学的な性質の共変的な記述	444
2	1-10	相対論的な運動方程式	446
2	1-11	相対論的な運動方程式の積分	447
2	1 · 12	質量の発散積分を除くための、輻射理論の修正。	
		進んだポテンシャル	
2)		相対論的な輻射の反作用の直接的な計算	
		多 考 書	
	ď	智問題	454
第22	拿	輻射,散乱,分散	
22	2·1	帯電した調和振動子の輻射減衰	456
27	2.2	強制摄動	459
22	2.3	1個の自由電子による散乱	460
22	2 • 4	束縛された電子による散乱	462
22	2.5	振動子による輻射の吸収	463
22	2•6	振動子と輻射場のあいだの平衡	466
27	2.7	散乱体の体積分布の効果	467
2	2-8	体積分布による散乱。Rayleigh 散乱	471
22	2.9	分散式 The dispersion relation	473
2		散乱と吸収に関する一つの一般定理	
		多考書	
	ð	智問題	481
第23	3章	電磁場のなかの荷電粒子の運動	
23	3-1	世界線による記述	482
23	3.2	Hamilton 形式と 3 次元形式への移行	484
23	3.8	軌道の方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	487
25	3 - 4	本 用	491

2 3·5	磁気モーメ	ントをもつ粒	子の電磁場の中の運動	496
\$: 考 書··		***************************************	504
莈	酸問質	************		504
第24章	Maxwe	引 方程式の) Hamilton 形式	
24.1	1次元の過	機的な系への	多行	506
24.2	3 次元の連	続体への一般	(k	609
24.3	電磁場	크 구········	***************************************	····· 512
24.4	箱の中の周	期解,平面波	表示	515
参	; 考 書··	.,		617
萸	(習問題		***************************************	517
附	錄 I	***************************************		518
附	録Ⅱ	[***************************************	530
附	録』	[·····	***************************************	533
索	目			