Contents

Preface		xiii
List of Symbols		xix
Pa	rt One: Electromagnetic Fields in Vacuo	
Chap	ter 1 : Electromagnetic Fields	
1.1	Maxwell's Equations	2
1.2	Continuity Equations	4
1.3	Scalar and Vector Potentials	6
1.4	Gauge Conditions	8
1.5	Solution of Poisson's and d'Alembert's Equations	9
	Exercise Set 1	11
Chap	oter 2 : Cartesian Tensors	
2.1	Vector Components and Rotations	13
2.2	Rotation Matrix	14
2.3	Tensor Equations	16
2.4	Formal Rules for Cartesian Tensor Equations	17
2.5	The Vector Calculus	18
	Exercise Set 2	21
Chap	oter 3 : The Stress Tensor and Multipole Mome	\mathbf{nts}
3.1	The Maxwell Stress Tensor	24
3.2	Multipole Moments as Cartesian Tensors	26
3.3	Multipole Fields	29
3.4	The Potential Energy Associated with a Multipole	31
3.5	Expansion in Spherical Harmonics	32
	Exercise Set 3	35

Contents

Chap	ter 4 : Fourier Transforms	
4.1	Fourier Integral Theorem	38
4.2	Properties of Fourier Transforms	40
4.3	The Dirac δ -function	42
4.4	Truncations	43
4.5	Relations Involving Generalized Functions	45
	Exercise Set 4	48
Chap	ter 5 : Greens Functions	
5.1	Fourier Transformed Fields	52
5.2	Solution of Inhomogeneous Differential Equations	54
5.3	The Greens Function for Poisson's Equation	55
5.4	The Greens Function for d'Alembert's Equation	56
	Exercise Set 5	60
Pa	rt Two: Electromagnetic Responses of Media	
Chap	oter 6 : The Response of a Medium	
6.1^{-1}	Static Responses	64
6.2	Properties of Media	68
6.3	Two Alternative Descriptions of the Linear Response	71
6.4	Non-linear Response Tensors	74
	Exercise Set 6	77
Chap	oter 7 : General Properties of Response Tensors	
7.1	Positive and Negative Frequencies	79
7.2	Separation into Dissipative and Non-dissipative Parts	80
7.3	The Kramers–Kronig Relations	81
7.4	The Onsager Relations	83
7.5	The Principal Axes of Anisotropic Crystals	86
	Exercise Set 7	88
Chap	oter 8 : Analytic Properties of Response Functio	ns
8.1	Complex Frequencies and Analytic Continuation	90
8.2	Laplace Transforms	92
8.3	Contour Integration	93
8.4	Poles in the Upper Half ω Plane	96
	Exercise Set 8	100
Chap	oter 9 : Response Tensors for Some Idealized Me	edia
9.1	The Polarizability of Atoms and Molecules	102
9.2	The Lorenz–Lorentz Equation	103
9.3	A System of Forced Classical Oscillators	107
9.4	Quantum Calculation of Polarizability	110
	Exercise Set 9	113

viii

Chap	ter 10 : Response Tensors for Plasmas	
10.1	The Magnetoionic Theory	115
10.2	Cold Plasmas	117
10.3	Isotropic Thermal Plasmas	119
10.4	The Vlasov Equation	123
	Exercise Set 10	126
Pa	rt Three: Wave Properties	
Chap	ter 11 : Wave Dispersion and Polarization	
11.1	The Wave Equation	132
11.2	The Dispersion Equation and Dispersion Relations	133
11.3	Polarization Vectors	135
11.4	Damping of Waves	137
11.5	Explicit Forms for $\Lambda(\omega, \mathbf{k})$ and $\lambda_{ij}(\omega, \mathbf{k})$	138
	Exercise Set 11	141
Chap	ter 12 : Waves in Anisotropic Crystals	
12.1	Waves in Isotropic Dielectrics	145
12.2	Waves in Uniaxial Crystals	146
12.3	The Group Velocity	149
12.4	Waves in Optically Active Media	152
12.5	Waves in Biaxial Crystals	154
	Exercise Set 12	157
Chap	ter 13 : Waves in Plasmas	
13.1	Waves in Isotropic Thermal Plasmas	161
13.2	Dispersion Relations for the Magnetoionic Waves	166
13.3	Cutoffs and Resonances	170
13.4	The Polarization of the Magnetoionic Waves	172
	Exercise Set 13	175
Chap	oter 14 : The Polarization of Transverse Waves	
14.1	The Polarization Tensor	178
14.2	Interpretation of the Polarization Tensor	180
14.3	The Weak Anisotropy Limit	183
14.4	The Transfer Equation in the Jones Calculus	186
14.5	The Transfer Equation in the Mueller Calculus	187
14.6	Examples of the Transfer of Polarized Radiation	189
	Exercise Set 14	192
Chap	oter 15 : Energetics and Damping of Waves	
15.1	The Electric and Magnetic Energies in Waves	196
15.2	The Work Done by a Dissipative Process	198
15.3	Temporal and Spatial Damping	200
15.4	The Energy Flux in Waves	202

CONCINC

15.5	Semiclassical Description of Waves	204
	Exercise Set 15	208
Pa	rt Four: Theory of Emission Processes	
Chap	ter 16 : The Emission Formula	
16.1	The Photon Propagator	214
16.2	The Emission Formula	216
16.3	The Einstein Coefficients	219
16.4	The Kinetic Equation for the Waves	222
	Exercise Set 16	224
Chap	oter 17 : Emission by Multipoles	
17.1	The Multipole Source Terms	227
17.2	Multipole Emission in Transverse Waves	230
17.3	Multipole Emission in Vacuo	233
17.4	Quantum Mechanical Transitions	236
17.5	Two Derivations of the Absorption Coefficient	239
	Exercise Set 17	243
Chap	oter 18 : The Larmor Formula	
18.1	The Current Associated with a Moving Particle	247
18.2	Derivation of the Larmor Formula	249
18.3	Applications of the Larmor Formula	250
18.4	Lorentz Transformation of the Larmor Formula	255
	Exercise Set 18	259
Chap	oter 19 : Alternative Treatment of Emission Pro	cesses
19.1	The Lienard–Wierchert Potentials	261
19.2	Calculation of the Poynting Vector	263
19.3	Alternative Derivation of the Larmor Formula	265
19.4	Generalizations of the Larmor Formula	267
19.5	Radiation Reaction	269
	Exercise Set 19	271
Pa	rt Five: Specific Emission Processes	
Char	oter 20 : Cerenkov Emission	
20.1^{-1}	A Charge in Constant Rectilinear Motion	276
20.2	The Cerenkov Condition	278
20.3	The Power Radiated in Transverse Waves	281
20.4	The Power Radiated in Langmuir Waves	282
20.5	Cerenkov Absorption (Landau Damping)	284
20.6	Quasi-linear Relaxation	287
20.7	Appearance Radiation and Transition Radiation	290
	Exercise Set 20	295

x

	Contents	xi	
Chap	ter 21 : Bremsstrahlung		
21.1	Qualitative Discussion of Bremsstrahlung	300	
21.2	The Straight Line Approximation	303	
21.3	Continuous Emission due to Distant Encounters	305	
21.4	The Gaunt Factor	307	
21.5	Collisional Damping	311	
	Exercise Set 21	313	
Chap	ter 22 : Formal Theory of Gyromagnetic Emissi	on	
22.1^{-1}	The Current due to a Spiraling Charge	319	
22.2	The Resonance Condition	322	
22.3	The Power Radiated in Vacuo	324	
22.4	Gyroemission and Absorption of Magnetoionic Waves	326	
22.5	Kinetic Equation for Gyromagnetic Emission	329	
22.6	Cyclotron Emission by Thermal Electrons	330	
	Exercise Set 22	334	
Chap	ter 23 : Gyrosynchroton Emission		
23.1	Cyclotron Maser Emission	339	
23.2	Loss-Cone Driven Maser Emission	341	
23.3	Mildly Relativisitic Electrons	343	
23.4	Gyrosynchrotron Formulas	346	
	Exercise Set 23	349	
Chapter 24 : Synchrotron Emission			
24.1	Forward Emission by Relativistic Particles	352	
24.2	Semiquantitative Treatment of Synchrotron Emission	354	
24.3	The Emissivity for Synchrotron Emission	356	
24.4	Emission by a Power-Law Distribution	357	
24.5	Synchrotron Absorption	360	
24.6	The Razin Effect	362	
	Exercise Set 24	364	
Chapter 25 : Scattering of Waves by Particles			
25.1	Thomson Scattering	366	
25.2	Inverse Compton Scattering	369	
25.3	Scattering by a Classical Oscillator	370	
25.4	Rayleigh Scattering and Raman Scattering	372	
25.5	Stimulated Scattering	375	
	Exercise Set 25	377	
Chap	oter 26 : Non-linear Emission Processes		
26.1	Three-Wave Interactions	382	
26.2	Frequency Doubling in a Crystal	386	
26.3	The Non-linear Response of a Plasma	389	

Contents

26.4	Radiation from a Turbulent Plasma	391
	Exercise Set 26	398
Bibliographic Notes		401
Inde	x	405

xii