CONTENTS

1	Magnetic Field Distortion Pickup Methods	20 20 20
	Conclusion	20
2.	REFERENCES	21
		22
4	DIDLIOGICALITI	22
o		
Z		
-	OF CONTAIN DAGGE CONTAINED AND DESTRONS	
7		~~
_	OF EDDY CURRENT TESTING	25
7		
		26
9		27
	Characteristics of Eddy Current Transducers .	27
9	The Nature of Potential Difference or Voltage	
11	Drop	28
11		29
		30
13		
		30
13		
10		32
13	Discovery of Induced Currents	32
13		32
10	Magnetic Field of Courset Courses	34
13	Magnetic Field of Current Carrying	20
1.4	Conductors	32
14	Magnetic Field	33
- 4	The Concept of Magnetic Flux Linkage	33
14	The Concept of Self-Inductance	34
	Faraday's Law of Electromagnetic Induction	34
14		35
15	ELECTRIC CIRCUITS	36
15	The Concept of Mutual Inductance	36
15	The Concept of Leakage Inductance	36
		36
16		
	Circuits	37
16	Transformer Action in Eddy Current Test	
		38
16	PART 4: TIME-RELATED PARAMETERS OF	•
10		39
17		39
11		Jö
10		20
19	Sinusoidal Functions	39
10		
	Functions	40
19		41
	Mathematical Expressions for Sinusoidal Time	
20	Functions	41
	2 2 2 7 7 9 9 11 11 13 13 13 14 14 14 15 15 15	Transformer Pickup Methods Conclusion 2 REFERENCES 2 BIBLIOGRAPHY 7 SECTION 2: BASIC CONCEPTS AND THEORY OF EDDY CURRENT TESTING 7 INTRODUCTION 9 PART 1: FUNDAMENTALS OF ELECTRICITY Characteristics of Eddy Current Transducers 9 The Nature of Potential Difference or Voltage 10 Drop 11 The Nature of Electric Current The Nature of Electric Resistance 13 The Concepts of Specific Resistivity and Specific Conductivity 14 PART 2: MAGNETIC EFFECTS OF ELECTRIC CURRENTS 15 Discovery of Induced Currents Arago's Vibrating Magnetic Needle 16 Magnetic Field of Current Carrying Conductors 17 Conductors 18 Magnetic Field The Concept of Magnetic Flux Linkage 19 The Concept of Self-Inductance Faraday's Law of Electromagnetic Induction Inertial and Time-Lag Effects of Inductance PART 3: MAGNETICALLY COUPLED 15 ELECTRIC CIRCUITS 15 The Concept of Mutual Inductance Transformer Action in Mutual Inductance Circuits 16 Transformer Action in Mutual Inductance Transformer Action in Eddy Current Test Systems 16 PART 4: TIME-RELATED PARAMETERS OF ALTERNATING CURRENT CIRCUITS 17 Sinusoidal Functions 18 Frequency and Period of Sinusoidal Time Peak Amplitude and Effective Values of Sinusoidal Functions Frequency and Period of Sinusoidal Time Phase Angle of Sinusoidal Time Functions Mathematical Expressions for Sinusoidal Time

Phase Difference or Phase Lag of Sinusoidal		PART 5: TYPES OF EDDY CURRENT	
Functions	41	TRANSDUCERS	71
The Concepts of Phasors and Sinors	41	Cup-Core Probes	71
PART 5: CIRCŪIT ANALYSIS BY COMPLEX		Shielded Probes	76
QUANTITIES	4 3	Inside Diameter Probes	79
Representation of Sinusoidal Time Functions .	43	Encircling Coil Transducers	83
AC Impedance of Resistance-Inductance Series		Multicoil Transducers	84
Circuits	44	Other Transducers	86
Effects of Frequency on the Impedance of R-L		Conclusions	86
Circuits	45	REFERENCES	87
Power Factor of Alternating Current Circuits	45		
Complex Voltage Plane Analyses of Series R-L		SECTION 4: THEORY OF ENCIRCLING COIL	
Circuits	46	AND INTERNAL AXIAL COIL TESTS OF	
Complex Impedance Plane Analyses of Series		TUBES	89
R-L Circuits	48	TODES	00
Optimizing Test Sensitivity by Maximizing		INTRODUCTION	90
Resistive Signal Component	50	PART 1: ENCIRCLING AND INTERNAL COIL	00
		SYSTEMS FOR TESTS OF THIN-WALLED	
		TUBES	91
SECTION 3: EDDY CURRENT		Definition of Coil Fill-Factors with External and	-
TRANSDUCERS	53	Internal Axial Coils	91
		Theory of Testing Thin-Walled Nonmagnetic	
PART 1: INTRODUCTION TO EDDY CURRENT		Tubes	91
TRANSDUCERS	54	Complex Plane of Impedance or Voltage Signals	
PART 2: CLASSIFICATION OF EDDY CURRENT	-	for Thin-Walled Tubes	92
TRANSDUCERS	56	Coil Impedance and Voltage Signals with	
Factors Affecting Eddy Current Transducers	57	Reduced Fill-Factors	94
PART 3: GENERAL CHARACTERISTICS OF		Direct Computation of Effective Permeability	
EDDY CURRENT TRANSDUCERS	58	from Frequency Ratio	94
Transducer Lift-Off Effect	58	Effects of Changes in Outside Diameter of Thin-	
Effect of Test Coil Diameter upon Reactance.	58	Walled Tubes	94
Effect of Test Coil Diameter on Projection of		Sensitivities of Encircling Coil or Internal Axial	
Magnetic Field in Air	58	Coil Tests of Tubes	95
Effect of Coil Diameter on Axial Projection of		Maximum Sensitivity for Tests of Thin-Walled	
Magnetic Field	59	Nonmagnetic Tubes	95
Test Coil Reactance in the Vicinity of		Experimental Determination of Frequency	
Nonmagnetic Materials	59	Ratio for Thin-Walled Tubes	95
Test Coil Reactance in the Vicinity of		Analysis of Cracks in Nonferromagnetic Thin-	
Ferromagnetic Materials	60	Walled Tubes	96
Effect of Spacing between Test Coil and		Frequency Selection for Detecting Cracks in	
Test Material	60	Thin-Walled Nonmagnetic Tubes	96
Effects of Rough or Curved Test Object		PART 2: THEORY OF ENCIRCLING COIL	
Surfaces	61	TESTS OF THICK-WALLED TUBES	98
Use of Large Diameter Probes or Increased		Complex Plane Diagram for Tests of Thick-	00
Ampere-Turns to Compensate for Large Lift-		Walled Nonmagnetic Tubes	98
Off	61	Effect of Variations in Tube Wall Thickness with	00
PART 4: DESIGN OF EDDY CURRENT		Unity Fill Factor	99
TRANSDUCERS	62	Coil Impedance and Voltage Signals from Tubes	100
Experimental Design of Eddy Current	00	with Reduced Fill-Factors	100
Transducers	62	Effects of Variations in Outside Diameter of	100
Analytical Design of Eddy Current	60	Thick-Walled Tubes	100
Transducers	63 66	Maximum Test Sensitivity for Encircling Coil	102
Numerical Design	00	Tests of Thick-Walled Tubes PART 3: THEORY OF ENCIRCLING COIL	102
Probe Design	70	TESTS FOR CRACKS IN TUBES	103
I TODE Design	10	ILOIO POR CIUCIO IN LUDIO	100

Selection of Test Conditions for Crack Tests in		Selection of Test Frequency for Sorting	
Nonmagnetic Tubes	103	Nonmagnetic Bars	131
Selection of Test Conditions for Tests of Cracks		Modified Relations Used in Analysis of	
in Ferromagnetic Tubes	104	Ferromagnetic Bar Sorting	132
AC Magnetic Field Distribution in Encircling		Complex Plane for Encircling Coil Filled with	
Coil Tests of Tubes	106	Ferromagnetic Bar	132
Amplitude Attenuation of AC Magnetizing Field		Effect of Coil Fill-Factor in Tests of	
Intensity	106	Ferromagnetic Bars	133
Graphs of Magnetic Field Intensities at ID and		Infeasibility of Separating Diameter and High	
OD Surfaces of Tubes	107	Permeability Effects	133
Optimum Frequency Ratios for Crack Tests in		The Similarity Law for Eddy Current Testing.	134
Ferromagnetic Tubes	107	PART 3: ANALYSIS OF ENCIRCLING COIL	
Optimum Frequency Ratios for Crack Tests with		TESTS FOR DISCONTINUITIES IN BARS	137
DC Saturating Coils	107	Model Tests for Analysis of Discontinuities in	
REFERENCES	110	Bars	137
		Application of Similarity Law to Mercury Model	
		Crack Tests	138
		Analysis of Cracks in Nonmagnetic Bars	138
SECTION 5: ANALYSIS OF ENCIRCLING		Use of Comparison Coil Systems for Tests of	100
COIL TESTS OF WIRE, RODS AND BARS .	111	Bars	139
COLL IDOIS OF WIRE, RODS IN 12 BIRES .		Comparison Coil Crack Signal Voltages with	1.40
INTRODUCTION	112	Specific Coil Fill-Factors	140
PART 1: CONCEPTS OF CHARACTERISTIC		Suppression of Effects of Variation in Bar	1./1
FREQUENCY AND EFFECTIVE		Diameter	141
PERMEABILITY OF BARS	113	Selection of Test Frequency for Surface Crack	1.41
Examples of Encircling Coil Eddy Current Test		Detection in Bars	141
Arrangements	113	Selection of Test Frequency for Detection of	1.41
Empty Coil Voltage	113	Subsurface Cracks in Bars	141
Influence of Test Material in Encircling Coil		Effect of Coil Fill-Factor on Crack Tests of	140
Transducer	114	Bars	142
Concept of the Characteristic or Limit		Normalized Crack Effect Signals with Reduced	1.40
Frequency	114	Coil Fill-Factor	142
Eddy Current Test Frequency Ratios	120	Quantitative Calculation of Crack Depths in	142
The Concept of Effective Permeability	120	Nonmagnetic Bars	143 144
Filled Test Coil Voltage Computed from		Analysis of Cracks in Ferromagnetic Bars	144
Effective Permeability	121		
Effective Permeability as a Function of Test			
Frequency Ratio	122		
Procedure for Calculating Coil Voltage from		SECTION 6: ANALYSIS OF PROBE AND	
Effective Permeability	123	THROUGH-TRANSMISSION TESTS OF	
PART 2: ANALYSIS OF ENCIRCLING COIL		SHEETS AND FOILS	147
TESTS FOR SORTING OF BARS	125		
Applications for Sorting of Bars	125	INTRODUCTION	148
Theory for Test Bar Smaller than Encircling Coil		PART 1: INTRODUCTION TO EDDY CURRENT	
Diameter	125	TESTS OF NONMAGNETIC SHEETS	150
Complex Plane for Test Bar Smaller than		Applications of Sheet and Foil Tests	150
Encircling Coil Diameter	126	Principles of Operation for Sheet Tests	150
Coil Voltage for Ferromagnetic Test Bar Smaller		Arrangement of Test Coils for Sheets and Foils	151
than Test Coil	127	Effects of Test Coil Geometry and Position in	
Impedance Characteristics of a Single Encircling		Sheet Tests	152
Coil Transducer	128	Comparison of Probe Coils and Encircling	
Separation of Variables in Sorting Tests of		Test Coils	153
Nonmagnetic Bars	128	Phasorscope Display of Probe Coil Test Signals	153
Experimental Determination of Limit	101	Typical Probe Coil Test Signals for Nonmagnetic	1
Frequency and Material Conductivity	131	Sheets	153

PART 2: ANALYSIS OF THROUGH-		Sensitivity of Conductivity Measurements with	
TRANSMISSION EDDY CURRENT TESTS OF		Probe Coils	174
SHEETS	157	Universal Conductivity-Frequency Product	
Principle of Through-Transmission Tests of		Locus Curve for Probe Coil Tests	175
Sheets	157	Selection of Test Frequency for Probe Coil	
Transmission Coefficient for Eddy Current Tests		Conductivity Tests	175
of Sheets	157	Suppression of Probe Lift-Off Effects with	
Limit Frequency for Through-Transmission		Nonmagnetic Materials	177
Tests of Sheets	157	PART 5: PROBE COIL MEASUREMENT OF	
Independence of Test Object Position between		THICKNESS OF METALLIC SHEETS AND	
Transmission Test Coils	158	COATINGS	178
Complex Plane Locus Curve for Transmission		Selection of Probe Coil Characteristics for	
Coefficient	158	Thickness Tests	178
Similarity Law for Through-Transmission Tests		Selection of Test Frequency for Probe Coil	
of Flat Conductors	159	Thickness Tests of Sheets	178
Tests for Conductivity-Thickness Product for		Thickness Tests of Insulating Layers on	
Flat Nonmagnetic Conductors	160	Nonmagnetic Base Metal	179
Determining Transmission Test Coil Constant		Probe Coil Design for Tests of Insulating	
from the Balance Frequency	161	Coating Thickness	179
Direct Indication of Thickness for Nonmagnetic		Suppression of Conductivity Effects During	
Metallic Sheets and Foils	162	Probe Coil Tests of Coating Thickness	180
Direct Measurement of Resistance per Unit		Probe Coil Tests of Metallic Composites with	
Square of Conducting Films	162	Two or More Conducting Layers	180
PART 3: ANALYSIS OF PROBE COIL TESTS OF		Complex Plane Diagram for Probe Coil Tests of	
SHEETS AND FOILS	164	a Thin Conducting Coating on a Thick	
Comparison of Probe Coil and Through-		Metallic Base	181
Transmission Test Methods	164	PART 6: PROBE COIL DETECTION OF CRACKS	
Coupling Efficiency during Probe Coil Tests of		IN NONMAGNETIC MATERIALS	185
Sheets	164	Principles of Crack Detection	185
Complex Plane for Secondary Voltage in Probe		Crack Sensitivity of Eddy Current Probe Coil	
Coil Tests of Sheets	165	Tests	185
Real and Imaginary Components of Probe Coil		Separation of Crack Effects and Lift-Off Effects	
Secondary Voltage Signal	165	on Complex Plane Diagram	185
Voltage Signals for Differential Probe Coil Tests		Selecting Probe Coil Test Conditions to Measure	
of Sheets	166	Depths of Surface Cracks	186
Voltage Signals for Single Probe Coil Tests of		Sensitivities of Probe Coil Measurement of	
Sheets	166	Depths of Surface Cracks	186
Characteristic Factors for Probe Coil Tests of		•	
Sheets	167		
Experimental Determination of Probe Coil		SECTION 7: EDDY CURRENT TESTS OF	
Factors	167	SPHERES AND SHORT PARTS	189
Example Calculation of Probe Coil Factors from			
Coil Impedance Measurements	170	PART 1: TESTS OF SPHERES AND SHORT	
PART 4: PROBE COIL MEASUREMENT OF		PARTS WITH CIRCULAR TEST COILS	190
ELECTRICAL CONDUCTIVITY	172	Significance of Spherical Test Objects	190
Complex Plane of Test Signals with Probe Coil		Determination of the Limit Frequency for	
Lift-Off	172	Circular Test Coils	190
Effect of Probe Coil Lift-Off upon Frequency		Effective Permeability of the Sphere	190
Ratio and Coupling Efficiency	172	Normalized Impedance and Secondary Voltages	
Lift-Off Locus Curves for Probe Coil Tests of		for a Sphere	191
Sheets	172	Characteristics of the Complex Impedance	
Design of Probe Coils to Control Lift-Off		Plane for Circular Test Coil and Spherical	
Response Characteristics	173	Part	192
Causes of Attenuation of Probe Coil Magnetic		Shape Permeability and Demagnetization	
Field Intensity	174	Factor	193

Computing Effective Permeability for Circular		PART 3: HYSTERESIS LOOP	
Test Coils	194	CHARACTERISTICS	231
Complex Voltage and Impedance Planes for		Magnetic Hysteresis	231
Nonferromagnetic Spheres in Circular Test		Hysteresis Loop Tests	233
Coils	195	Loop Pattern Analysis	233
Crack Testing of Spheres with Circular Test	100	Comparator Bridge Tests	234
Coils	195	Spread Bands	235
PART 2: TESTS OF SPHERES AND SHORT	100	PART 4: USE OF DIGITAL	
PARTS WITH SPHERICAL COILS	198	INSTRUMENTATION	236
Principle of Tests with Spherical Coils	198	Contributing Variables	236
Complex Plane for Spherical Shell in Spherical	100	Relationship between Microstructure and Eddy	
Test Coil	199	Current Behavior	236
Penetration Depth Considerations	200	Relationship between Alloys and Eddy Current	200
Transition from a Spherical Shell to a Solid	200	Signals	236
Soboro	201	Generation of Metallurgical Signature	237
Sphere Spherical Shell with Ferromagnetic Core	201	PART 5: ELECTRICAL RESISTIVITY	20,
Completions of Spherical Coil Tests with Test	201	MEASUREMENTS	238
Correlations of Spherical Coil Tests with Test	203	Principles of Resistivity Tests	238
Object Characteristics	$203 \\ 204$	Applications of Resistivity Measurements	239
REFERENCES	204	PART 6: THERMOELECTRIC SORTING	240
			240
		Application of the Thermoelectric Effect PART 7: DESIGN OF EDDY CURRENT METAL	240
SECTION 8: EDDY CURRENT TESTS OF			242
FERROMAGNETIC TUBES	205	SORTING EQUIPMENT	242
		Sensing Coils, Input Circuits and Excitation	242
PART 1: REMOTE FIELD LOW FREQUENCY		Sources	
EDDY CURRENT INSPECTION	206	Amplifier Circuit	242
Remote Field Zone	206	Phase Digitizing Circuit	243
Eddy Currents in Pipe Wall Applications	207	Amplitude Digitizing	243
Example Applications	208	Generation of Metallurgical Signature	244
Conclusions	211	Microcomputer Hardware and Software	245
PART 2: MAGNETIC SATURATION		REFERENCES	249
TECHNIQUES	212		
Magnetization Using a Permanent Yoke for			
Testing Austenitic Steel Tubes	212		
REFERENCES	215	SECTION 10: REFERENCE STANDARDS FOR	
		ELECTROMAGNETIC TESTING	251
		PART 1: INTRODUCTION TO	
SECTION 9: ELECTROMAGNETIC SORTING		ELECTROMAGNETIC TESTING	
TECHNIQUES	217	STANDARDS	252
TECHNIQUES	211	General Standard Requirements	252
PART 1: EDDY CURRENT IMPEDANCE PLANE		Standards for Tubular Products	252
ANALYSIS	218		252
Impedance Plane	218	Conductivity Standards	253
Lift-Off and Edge Effects on Impedance	210	Magnetic Thickness Cores	254
Plane	219	Magnetic Thickness Gages	254
Conductivity and Permeability Loci on	219	Sorting Standards PART 2: THE FUNCTION OF REFERENCE	204
Impedance Plane	219		052
PART 2: CONDUCTIVITY TESTING		STANDARDS	257
	223	Simulation of Parts	257
Effect of Alloys	223	Simulation of Discontinuities	257
Conductivity of Aluminum Alloys	226	PART 3: METHODS OF REFERENCE	050
Magnetic Permeability	228	STANDARD FABRICATION	259
Geometry Effects on Measurement	228	Drilled Holes	259
Temperature Effects on Measurement	229	Longitudinal Notches	260
Conductivity Standards	229	Transverse Notches	262

DADE A DECLUDENTENES OF CODES OF		Dhara Datation for Demonstrat Communication	287
PART 4: REQUIREMENTS OF CODES OR	200	Phase Rotation for Parameter Suppression	201
SPECIFICATIONS	263	Bridge Unbalancing for Parameter	287
REFERENCES	264	Suppression	201
		Variable Tuning and Variable Carrier Frequency	000
SECTION 11: ELECTRONIC ANALYSIS	205	for Parameter Suppression	288
CIRCUITS FOR EDDY CURRENT TESTS	265	Parameter Suppression in Resonant Loss-	200
		Sensing Eddy Current Testing	288
PART 1: GENERAL REQUIREMENTS FOR		PART 7: ELECTRONIC CIRCUITS FOR	200
ELECTRONIC CIRCUITS USED IN FLAW	200	FREQUENCY SELECTION OF SIGNALS	289
SIGNAL ANALYSIS	266	Tuned Carrier Amplifiers for Suppression of	200
Electronic Factors Affecting Flaw Detection	200	Noise	289
Performance	266	Frequency Selective Filter Systems Operating	200
Signal Modulation by Discontinuities in Test	200	on Demodulated Signals	289
Materials	266	Circuit Implementation of Filters	291
Amplification of Eddy Current Test Signals	266	Active Filters	292
Carrier Suppression	267	Sampled Data Analog Filters	292
Detector Circuits for Discontinuity Signals	267	PART 8: CATHODE RAY TUBE SIGNAL	200
Selectivity Systems for Suppression of		DISPLAY SYSTEMS	293
Undesired Effects	267	Linear Time Base CRT Signal Display Systems	293
Display Methods	267	Ellipse Test Signal CRT Display Systems	294
PART 2: ELECTRONIC CIRCUITS FOR		Control of Horizontal Signal Phase Rotation	294
AMPLIFICATION OF FLAW SIGNALS	269	Complex Impedance Plane CRT Display	296
Carrier Frequency and Demodulated Signal		Horizontal and Vertical Deflection Amplifier	
Amplifiers	269	Functions	297
Harmonic Frequency Amplification	269	Impedance Plane Manipulation of Eddy Current	
Amplifier Drift	270	Test Indications	298
Recovery Time	271	PART 9: OTHER SIGNAL DISPLAYS	303
Amplifiers for Loss-Sensing Eddy Current		Analog Meter Displays	303
Tests	271	Digital Signal Displays	303
PART 3: ELECTRONIC CIRCUITS FOR		PART 10: ELECTRONIC GATING AND ALARM	
CARRIER SUPPRESSION	272	CIRCUITS	305
Carrier Suppression by Signal Injection	272	Amplitude Gates	305
Carrier Suppression with Variable Passive		Phase Gates and Box Gates	305
Elements in the Probe Coil Bridge	273	Polar Coordinate Based Phase Gates	306
Automatic Carrier Suppression Circuits	274	Phase Angle Gating of Linear Time Base	
High and Low Level Signal Injection	275	Displays	306
PART 4: ELECTRONIC CIRCUITS FOR		Audible and Visual Alarms	306
AMPLITUDE DETECTION OF SIGNALS	278	Software Controlled Gates	307
PART 5: ELECTRONIC CIRCUITS FOR PHASE		PART 11: SIMULTANEOUS MULTIFREQUENCY	
SENSITIVE DETECTION OF SIGNALS	281	TESTING CIRCUITS	308
Phase Selective Signal Analysis System	281	Frequency Separation by Bandpass Filters	308
Function of Phase Shifter and Phase Splitter.	281	Frequency Separation by Heterodyne	
Averaging Phase Sensitive Detectors	282	Techniques	309
Half-Wave Phase Sensitive Detectors	282	Signal Combining Methods for Suppression of	
Full-Wave Phase Sensitive Detectors	282	Multiple Undesired Conditions	310
Single Diode Phase Sensitive Detectors	283	PART 12: COMPUTER INTERFACE CIRCUITS	311
Diode Bridge Phase Sensitive Detectors	283	Circuits for Computer Control of Instrument	
Analog Multiplier Phase Sensitive Detectors	284	Functions	311
Sampling Phase Sensitive Detectors	284	Controlling Instrument Settings	311
Phase Sensitivity by Subtraction	285	Reading Instrument Outputs	311
Additive or All-Phase System to Eliminate Phase		Sending Outputs to External Equipment	311
Sensitivity	286	Parallel Interface Protocols	312
PART 6: PARAMETER SUPPRESSION		Systems for Computer Analysis of Instrument	
METHODS FOR EDDY CURRENT		Outputs	312
SYSTEMS	287	Software Methods for Signal Analysis	313

Conclusion	313	Effects of Short Slots	331
REFERENCES	314	Effects of Long Slots	331
		REFERENCES	334
SECTION 12: ELECTROMAGNETIC TESTS			
WITH HALL EFFECT DEVICES	315	SECTION 13: EDDY CURRENT	
		APPLICATIONS IN THE STEEL	
PART 1: INTRODUCTION TO HALL EFFECT	010	INDUSTRY	335
MAGNETIC FIELD DETECTORS	316		000
Principle of Tests with Hall Effect Detectors .	316	INTRODUCTION	336
Principles of Hall Detectors	316	PART 1: ROTATING ELECTROMAGNETIC	000
Electrical Circuit of a Hall Element	317	SYSTEMS FOR AMBIENT TEMPERATURE	
Operating Characteristics of Hall Effect	010	PRODUCT	337
Detectors	318	Eddy Current Systems that Rotate the Product	337
Directional Response Characteristics of Hall	010	Eddy Current Systems that Rotate the Sensors	342
Detectors	318	PART 2: NONROTATING ELECTROMAGNETIC	-
PART 2: HALL DETECTOR	010	SYSTEMS FOR AMBIENT TEMPERATURE	
CONFIGURATIONS	319	PRODUCT	346
Multidimensional Hall Detector Arrays	319	Multiprobe Eddy Current System	346
Linear Multichannel Hall Detector Arrays	319	Single Probe Eddy Current System	347
Bridge Arrays of Hall Detectors	320	PART 3: TESTS AT ELEVATED	٠
Differential Hall Detector Systems	320	TEMPERATURES	351
PART 3: DIFFERENCES IN PERFORMANCE		Encircling Transducers	351
OF HALL AND COIL PICKUP DETECTION	000	Probe Transducers	352
SYSTEMS	322	Eddy Current Detector	352
Magnetic Field Parameters Measured by	200	Inspection of Continuous Butt-Weld Pipe	353
Detectors	322	Inspection of Hot Rod	354
Test Object Area Included in Measurements	322	Inspection of Hot Continuous Caster Billets	355
Response to Test Frequency and Magnetizing	200	Eddy Current Testing of Rotating Cast Round	
Waveform	322	Billets	357
Response to Local Orientation of Magnetic	202	Water and Air Cooled Rotating Probe System .	357
Field	323	Inspection of Hot Continuous Cast Slabs	359
Degree of Detector Coupling with Eddy	202	Inspection of Hot Seamless Tubes	360
Current Field	323	Inspection of Hot Bars	362
PART 4: INSTRUMENTATION FOR HALL	204	Inspection of Hot Electric Resistance Welds	364
DETECTOR TEST SYSTEMS	324	Conclusion	365
Principles of Instrumentation Design	324	REFERENCES	367
Separation of Magnetic Reaction Field Vectors	324		
Circuits of Absolute Magnetic Reaction	325	SECTION 14: APPLICATIONS OF EDDY	
Analyzer	326	CTIDDETAIN PROPERTY OF THE ARTIST AREA	369
	320	CURRENT TESTING TO AIRFRAMES	308
Circuit of a Simple Differential Magnetic Reaction Analyzer	326	INTRODUCTION	370
	$320 \\ 327$	Evaluation of Aluminum Alloy Aerospace	310
Modes of Operation	327		370
TESTS OF SHEETS WITH HALL		Materials and Components Typical Application of Eddy Current Tests in the	310
DETECTORS	328	Application of Eddy Current lesis in the	370
Complex Plane Diagrams	328	Aerospace Industry	370
Characteristics of Probe Coil Tests on Uniform	320	Purpose and Scope PART 1: EDDY CURRENT TESTS OF METAL	310
	200	AND COATING THICKNESS	270
Sheets	328		372
Effect of Test Shoot Conductivity Variation	328	Measurement of Coating Thickness on Metal	270
Effect of Test Sheet Conductivity Variation	329	Parts	372
Correspondence with Probe Coil Pickups	329	Techniques for Eddy Current Measurement of	372
Effects of Magnetizing Coil Diameter	330 330	Metal Thickness Eddy Current Measurement of Conductive	312
Effect of Probe Lift-Off Spacing Effects of Sheet Edges and Slots	331	Coating Thickness	373
Effects of officer rages and blots	OOT	Coading Thickness	010

Eddy Current Measurement of Nonconductive		Procedure for Bolt Hole Inspection	402
Coating Thickness	373	Automated Bolt Hole Inspection	403
Feasibility Criterion for Tests of Coating		PART 7: IMPEDANCE PLAÑE ANALYSIS OF	
Thicknesses	374	TYPICAL AEROSPACE MATERIAL TESTS	405
Procedures for Verifying Applicability of Coating		Eddy Current Measurements on the Complex	
Thickness Tests	374	Impedance Plane	405
Metal Spacing	377	Selection of Test Frequency for Desired Test	
PART 2: EDDY CURRENT TESTS OF METAL		Results	406
CONDUCTIVITY	378	Application of Eddy Current Impedance Plane	
Selection of Eddy Current Conductivity	3.0	Testing	407
Meters	378	Metal Thinning Due to Corrosion	407
Requirements of Eddy Current Conductivity	0.0	Metal Spacing	407
Standards	378	Localized Metal Thinning	409
Factors Affecting Conductivity	379	Detection of Exfoliation Corrosion Around	400
Instrument Calibration and Factors Affecting	319		409
	270	Fastener Holes in Aluminum Wing Skins	
Conductivity Test Results	379	Surface Crack Detection	412
Operating Frequencies of Eddy Current	204	Improving Crack Detection Results by Rotating	410
Conductivity Tests	384	the Impedance Plane Response	413
Conversion of Resistivity in Micro-ohm	005	Subsurface Crack Detection	414
Centimeters to Percent IACS Conductivity.	385	PART 8: LOW FREQUENCY EDDY CURRENT	43.5
Correcting Eddy Current Conductivity Test		INSPECTION OF AIRCRAFT STRUCTURE	415
Data for Changes in Temperature	385	Depth of Penetration for Inspection of Aircraft	
PART 3: SORTING OF MIXED ALUMINUM		Structure	415
ALLOYS BY EDDY CURRENT		Applications for Low Frequency Eddy Current	
CONDUCTIVITY TESTS	386	Testing of Aircraft Structures	415
Use of Eddy Current Conductivity Meters for		Aircraft Window Belt Splice Cracks	416
Sorting Mixed Alloys	386	Improvements in Crack Detection	417
Overlapping Conductivity Ranges of Heat		Conclusion	418
Treatable Aluminum Alloys	386	REFERENCES	420
Selection of Conductivity Meter Range for Tests			
of Aluminum Alloys	386		
Conductivity Sorting of Aluminum Alloys by		SECTION 15: EDDY CURRENT	
Heat-Treat Conditions	387	APPLICATIONS	423
Specified Conductivity Ranges of Aluminum			
Alloys in Various Tempers	387	PART 1: AUTOMOTIVE APPLICATIONS OF	
PART 4: EVALUATION OF OVERAGING OR		EDDY CURRENT TESTING	424
HEAT DAMAGE TO ALUMINUM AIRCRAFT		Hardness and Case Depth Inspection of Axle	
STRUCTURES	388	Shafts	425
Introduction	388	Crack Detection in Disc Brake Rotors	426
Conductivity, Hardness, Strength (CHS)	3 00	Crack and Porosity Detection and Machined	120
Relationship	388	Hole Presence in Master Brake Cylinders	426
Eddy Current Tests of 2014 Aluminum Alloy .	389	Hardness Sorting of Transmission Detent	140
Eddy Current Tests of 2024 Aluminum Alloy .	389	Springs	427
Eddy Current Tests of 7075 Aluminum Alloy .	392	Hardness and Case Depth Sorting of Ball Joint	441
Evaluation of Aircraft Structures for Heat or	092		428
Fire Damage	396	Studs	429
PART 5: APPLICATIONS OF CONDUCTIVITY	390	Tin Plate Thickness on Diesel Engine Piston .	425
	200	Cold Headed Pinion Gear Blank Crack	400
TESTS ON TITANIUM ALLOYS	398	Detection	430
Detection of Alpha-Case on Titanium and	000	Transmission Parking Gear Inspection	431
Titanium Alloys	398	Piston Pin Inspection	432
Detection of Titanium Aluminide in Aluminum	000	Bumper Shock Absorber Tube Inspection	432
Brazed Titanium Honeycomb	398	Hub and Spindle Hardness and Case Depth	
PART 6: EDDY CURRENT INSPECTION OF	400	Inspection	434
BOLT HOLES	400	Camshaft Heat Treat Inspection	435
Eddy Current Bolt Hole Inspection	400	Ball Bearing Hardness Tester	436
Reference Standards for Bolt Hole Inspection .	401	Fastener Inspection	437

PART 2: SINGLE FREQUENCY EDDY CURRENT EXAMINATION OF INDUSTRIAL		Intrinsic Impedances of Dielectric Media Intrinsic Impedances of Metallic Conducting	470
AIR CONDITIONER HEAT EXCHANGER		Media	471
TUBING	385	PART 3: REFLECTION AND TRANSMISSION	711
Exchanger Tubing Test Instrumentation	439	OF MICROWAVES AT INTERFACES	472
	440		414
Selection of Test Frequency	441	Analogies Between Microwaves and	170
Absolute Test		Ultrasonics	472
Damage Mechanisms	442	Reactions of Two Plane Electromagnetic Waves	450
Guidelines for Inspection	443	Traveling in Opposite Directions	472
PART 3: EDDY CURRENT EXAMINATION OF	444	Standing Waves Created by Microwave	
BREEDER REACTOR FUEL ELEMENTS	444	Reflection from Perfect Conductors	472
Fuel Element Design	444	Standing Waves Created by Partial Reflection of	
Configuration	444	Microwaves from Interfaces	473
Sodium Bond Testing	444	Reflection and Transmission of Plane	
Cladding Integrity Testing	445	Electromagnetic Waves at a Boundary	474
Conclusion	448	Complex Intrinsic Impedance Values in Terms	
PART 4: DATA ANALYSIS GUIDELINES	449	of Phasor Components	474
Signal Analysis	449	Transmission and Reflection Coefficients for	
Variables Affecting Signal Analysis	449	Plane Electromagnetic Waves	475
Phase Discrimination Analysis Technique	452	Electromagnetic Wave Energy Transmission and	
Multifrequency and Multiparameter Analysis		Reflection Coefficients in Terms of	
Techniques	453	Impedance Mismatch Ratios	476
Discontinuity Depth Analysis	454	Standard Depth of Penetration of Microwaves	1.0
PART 5: BASIC EDDY CURRENT	101	into Conducting Materials	476
APPLICATIONS FOR AN ELECTRIC		Determining Wavelengths of Microwaves in	410
UTILITY	458	Conductors from Ponetration Donth	477
	459	Conductors from Penetration Depth	411
REFERENCES		Phase Factor and Attenuation Factor for	477
BIBLIOGRAPHY	460	Microwaves in Conducting Media	477
CHORLON, 10 PARCHONIANT MATERIAL	407	Standing Waves Created by Partial Reflection of	.==
SECTION 16: MICROWAVE THEORY	461	Microwaves at Interfaces	477
		Standing Wave Envelopes for Partially Reflected	
INTRODUCTION	462	Microwave Beams	478
PART 1: THE NATURE OF MICROWAVES	463	Standing Wave Ratio	478
Development of Microwave Theory and		Determining Microwave Reflection Coefficient	
Technology	464	from Standing Wave Ratio	478
Microwave Interactions with Materials	464	Reflection from a Dielectric Plate	480
PART 2: PROPAGATION CHARACTERISTICS		Snell's Law of Reflection and Refraction of	
OF MICROWAVES	465	Microwaves at a Boundary	481
Characteristics of Traveling Waves	465	Fresnel's Equations for Reflected and	
Characteristics of Plane Transverse		Transmitted (Refracted) Microwave Beam	
Electromagnetic (TEM) Waves	465	Amplitudes	482
Polarization of Electromagnetic Waves	466	Scattering of Microwave Beams by Small	
Energy Density of Electromagnetic Waves	467	Reflectors	483
Power Density of Plane Electromagnetic	201	Microwave Scattering from Various Reflector	100
Waves	467	Shapes and Arrays	485
Energy, Phase and Group Velocities of Plane	101	PART 4: RADIATION PATTERNS	486
Waves	467	The Fresnel or Near Field	486
Electromagnetic Wave Equation for Plane E	407	The Fraunhofer or Far Field	487
	160		
Waves	468	REFERENCES	488
Explanation of Phase Velocity	468		
Beat Frequency Modulation with Dual	400	OF COULD IS A MODOLINA BOOM BOOM BOOM BOOM BOOM BOOM BOOM BOO	
Frequency Microwaves	468	SECTION 17: MICROWAVE PROPERTIES OF	400
Explanation of the Group Velocity	469	DIELECTRIC MATERIALS	489
Microwave Propagation in Dispersive Media	469		
Index of Refraction for Electromagnetic Plane		INTRODUCTION	490
Waves	470	PART 1: MACROSCOPIC PROPERTIES	491

Complex Permittivity and Complex Magnetic Permeability	491	PART 5: MICROWAVE MOISTURE GAGING Principles of Moisture Measurement	548 548
The Nature of Dielectric Hysteresis Loss	491	PART 6: MICROWAVE RADIATION SAFETY	557
The Nature of Dielectric Materials	491	REFERENCES	558
Surface Charge Density on Polarized			
Dielectrics	492	SECTION 19: COMPUTER MODELING OF	
Dielectric Flux Density	492	EDDY CURRENT FIELDS	561
Relative Permittivity of Dielectric Media			
(Dielectric Constant)	493	PART 1: THE MATHEMATICAL BASIS OF	
Dielectric Heating and Loss Effects Caused by		MODELING	562
Microwave Beams	493	Basic Field Equations	563
Real and Imaginary Components of the		General Overview of Analytical and Numerical	
Complex Permittivity	494	Modeling	564
Complex Electric Current Density in Dielectric		PART 2: ANALYTICAL MODELING	565
Materials	496	The Integral Solution Method	566
Analysis of Phasor Diagram for Microwave Tests		PART 3: NUMERICAL MODELING	568
of Lossy Dielectrics	497	The Finite Difference Method	568
The Dielectric Attenuation Constant for Lossy	10,	Boundaries and Boundary Conditions	571
Dielectric Materials	498	Solution of the System of Equations	571
The Dielectric Phase Constant for Lossy	100	PART 4: THE FINITE ELEMENT METHOD	573
Dielectric Materials	498	Finite Element Formulation for Two-	0.0
The Propagation Constant for Traveling	100	Dimensional and Axisymmetric Geometries .	573
Electromagnetic Waves	498	Energy Functional for Eddy Current Problems	574
Conduction Current Density in Material with	100	Finite Element Discretization	574
Current Leakage	498	Finite Element Formulation	575
PART 2: MOLECULAR PROPERTIES	502		576
Molecular Interactions of Microwaves with	302	Quadrilateral Isoparametric Elements Functional Minimization	576
Dielectric Materials	502		577
REFERENCES	504	Boundary Conditions	311
REFERENCES	304	Potential	577
SECTION 18: MICROWAVE METHODS AND		PotentialPART 5: MODELING THE PHYSICS OF EDDY	311
APPLICATIONS IN NONDESTRUCTIVE		CURRENT TESTING	579
TESTING	505	Modeling for Probe Design	580
TESTING	505	Application of the Finite Element Model for the	000
INTRODUCTION	506		
PART 1: HISTORY AND STATUS OF	500	Design of Simple Differential and Absolute	E01
MICROWAVE TESTING	507	Eddy Current Probes	581 584
PART 2: MICROWAVE CIRCUITS	508	Modeling for Simulation	587
		Conclusions	
General Description	508 509	REFERENCES	588
Microwave Circuit Components PART 3: MICROWAVE METHODS FOR	309	SECTION OO. CONCEPTS OF	
NONDESTRUCTIVE TESTING	E16	SECTION 20: CONCEPTS OF	
	516	MULTIFREQUENCY EDDY CURRENT	E01
Basic Microwave Circuits	517	TESTING	591
FM Ranging Systems	519	DADE 1 INCRADICEION CO	
FM Resonant Cavity Techniques	527	PART 1: INTRODUCTION TO	= 0.0
Impedance Plane Analysis	529	MULTIFREQUENCY TESTING	592
PART 4: NONDESTRUCTIVE TESTING	500	Requirements for Multifrequency Testing	592
APPLICATIONS FOR MICROWAVES	530	Physical Basis of the Multifrequency Process .	593
Microwave and Ultrasound Comparisons	530	PART 2: OPERATING PRINCIPLES	596
Microwave Applications to Dielectric	~ 00	Algebraic Method	596
Materials	530	Coordinate Transformation Method	596
Thickness Measurement	532	Combination Method	597
Detection of Internal Discontinuities	536	PART 3: MULTIFREQUENCY	.
Measurement of Material Properties	540	INSTRUMENTATION	599
Microwave Applications to Metals	544	Multifrequency Test Equipment	599
Miscellaneous Microwave Applications	545	Simultaneous Frequency Instruments	600

Alternate Frequency Instruments	600	Magnitudes of Magnetic Flux Leakage Fields.	624
Analog Analysis Systems	601	Residual Induction Field Reversal Effect	624
Digital Analysis System	602	Effect of Angling the Activating Field	626
PART 4: EXAMPLES OF MULTIFREQUENCY		Overlap Fields	626
TESTING APPLICATIONS	603	Finite Element Methods	627
Tube Inspection Using Differential Axial		REFERENCES	630
Probes	603		
Parameter Elimination by the Multifrequency		SECTION 30. DIVEDTED ELLIV	
Method	603	SECTION 22: DIVERTED FLUX	631
REFERENCES	605	APPLICATIONS	031
CECTION 01. DIVEDTED ELLY THEODY	607	PART 1: INTRODUCTION TO DIVERTED FLUX	
SECTION 21: DIVERTED FLUX THEORY	007	APPLICATIONS	632
PART 1: INTRODUCTION TO FLUX		Types of Parts Inspected by Magnetic Flux	
	608	Leakage	633
LEAKAGE	608	Types of Discontinuities Found by Magnetic	
Spectrum of Industrial Use	608	Flux Leakage	634
Typical Discontinuities	609	Effects of Discontinuities	636
Magnetic Units of Measure	611	Sensors Used in Magnetic Flux Leakage	
Demagnetization FieldsPART 2: PRODUCING THE MAGNETIZING	011	Inspection	636
FORCE USING DIRECT CURRENT	614	Typical Magnetic Flux Leakage Applications	641
	614	Damage Assessment	651
The Magnetizing Coil	615		
Applied Direct Current	616	SECTION 23: GLOSSARY AND TABLES	653
Capacitor Discharge Units	617	SECTION 23: GLOSSARI AND TABLES	000
Yokes Optimal Operating Point	618	PART 1: GLOSSARY	654
PART 3: BASICS OF MAGNETIC FLUX	010	PART 2: TABLES	660
LEAKAGE TESTING	619	PART 3: SUGGESTED READING	665
	619	REFERENCES	666
Basic Förster Theory	019	REPERENCES	000
Comparison of Leakage Field Theory Predictions and Measured Data	623	INDEV	0111
riedicuons and measured Data	UZJ	INDEX	2111