CONTENTS

RADIATION EMITTED BY UNIFORMLY-MOVING SOURCES THE VAVILOV-CERENKOV EFFECT, (THE DOPPLER EFFECT IN A MEDIUM, TRANSITION RADIATION AND ASSOCIATED PHENOMENA) 1 V.L. Ginzburg

1.	Introduction	2
2.	The Vavilov-Cerenkov Effect for a Charge	4
3.	Quantum Theory of the Vavilov-Cerenkov Effect	9
4.	Vavilov-Cerenkov Radiation with Motion in Channels	
	and Slots	12
5.	Vavilov-Čerenkov Radiation for Electrical, Magnetic	
	and Toroidal Dipoles	13
6.	Classical and Quantum Theories of the Doppler	
	Effect in a Medium	19
7.	Transition Radiation at the Interface of Two Media	22
8.	Transition Radiation as a Phenomenon of a More	
	General Type. Formation Region	27
9.	Transition Scattering. Transition Bremsstrahlung	
	Radiation	30
10.	Transition Radiation, Transition Scattering, and	
	Transition Bremsstrahlung Radiation in a Plasma	33
11.	Final Comments	36
Bibl	iography	37

THE PHYSICS OF SUPERHIGH ENERGY NEUTRINOS M.A. Markov

41

1.	The Upper Limit on the Energy Spectrum of	
	Elementary Particles in the Universe	45
2.	Detection of Ultrahigh Energy Neutrinos	47
Bibl	liography	49

	EVOLUTION EQUATIONS FOR THE DENSITY MATRICES OF LINEAR OPEN SYSTEMS V.V. Dodonov, V.I. Man'ko	53
Bibl	iography	59
	OHANTIM BARTICI F IN NONSTATIONARY	
	COULOWE POTENTIAL	61
	V.V. Dodonov, V.I. Man'ko, D.L. Osipov	•1
Bibl	iography	72
	SOLUBLE MODELS OF MULTILEVEL SYSTEM Interaction with a quantized	
	ELECTROMAGNETIC FIELD	77
	V.V. Dodonov, V.I. Man'ko, S.M. Chumakov	
1.	Introduction	77
2.	Interaction of an <i>n</i> -Level Molecule With a	
	Quantized Electromagnetic Field Mode	84
3.	Two-Level Molecule	91
4.	Three-Level Molecule	96
5.	Certain Generalizations. The Multidimensional Case	98
6.	Two-Level System Outside the Framework of the	
	Rotating Wave Approximation	116
Bibl	liography	123

THE INFLUENCE OF ABERRATIONS ON GAUSSIAN BEAM PROPAGATION

K.B. Wolf, V.I. Man'ko

127

Rede woll, vele han Ro	
Introduction	127
The Action, Lagrangian, and Hamiltonian in Optics	129
Equations of Motion and the Generating Function	130
Quantization	131
Heisenberg Equations and the Integrals of Motion	132
The Propagator in Coordinate Space	133
	Introduction The Action, Lagrangian, and Hamiltonian in Optics Equations of Motion and the Generating Function Quantization Heisenberg Equations and the Integrals of Motion The Propagator in Coordinate Space

7.	Gaussian Beams and Their Evolution	134
8.	Correlation Functions for a One-Dimensional	
•	Gaussian Beam	136
9.	The Generating Functional for Higher Order	
	Correlations	138
10.	Evolution of the Coordinate Coherent States	142
11.	Evolution of Discrete Correlated Modes	148
12.	Evolution of Systems Described by Hamiltonians	
	Dependent Only on the Momentum	150
13.	Generating Functional and Generating Function	
	for a Nonstationary p-Dependent Hamiltonian	153
14.	Influence of Spherical Aberrations on Beam	
-	Propagation	156
15.	Conclusion	163
Bibl	iography	165

	CORRELATED COHERENT STATES	169
	V.V. Dodonov, E.V. Kurmyshev, V.I. Man'ko	
Intre	oduction	169
1.	Correlated Wave Minimum Uncertainity Packets	170
2.	Evolution of the Correlated Coherent States of	
	a One-Dimensional General Quadratic Quantum System	172
3.	The Algebraic Properties and Unitary Equivalence	
	of Correlated Wave Packets	174
4.	"Squeezed" States	175
5.	The Matrix Elements of the Unitary Equivalence	
	Operators and the Overlap Integrals of the	
	Correlated Packets	177
6.	The Green's Function of General Quadratic Quantum	
	Systems in Correlated Bases	181
7.	Correlated Coherent States of a Charged Particle	
	in a Uniform Magnetic Field	183
8.	The Evolution of the Correlated Coherent States	
	of a Charged Particle in a Uniform Magnetic Field	189
9.	Correlated Coherent States - Eigenstates of the	
	Integrals of Motion	190
10.	Correlated Coherent States in Geophysical Research	192
Apper	ndix A	194
Appen	ndix B	194
Bibl:	Lography	195

THE AHARONOV-BOHM EFFECT FOR STATIONARY AND COHERENT STATES OF AN ELECTRON IN A UNIFORM MAGNETIC FIELD V.G. Bagrov, D.M. Gitman, V.D. Skarzhinskiy

201

1.	Int	roduction	201
2.	Sta	tionary States	203
3.	Coh	erent States	208
Appe	ndix		
••	1.	Calculation of the Normalization Constant N	214
	2.	Calculation of the Averages $\overline{a}j$	215
	3.	Calculation of the Average Energy	217
Bibl	iogr	aphy	218

THE NONDEGENERATE GAUGE AND GENERALIZED CANONICAL FORMALISM 221 T.E. Fradkina

1.	The Nondegenerate Gauge Within the Framework of the	
	Canonical Formalism	224
2.	Operator Aspect of the Theory in the Nondegenerate	
	Gauge	227
Bibl	liography	235

SYMMETRICAL NEAR-NORMAL
FINITE DISTRIBUTIONS237E.M. Moroz, K.N. Shorin2371. Introduction2372. Properties of the Desired Distributions240

	2.1.	The Difference Between a Normal Distribution	
		and the Desired Distribution	240
	2.2.	Common Properties Between the Desired	
		Distribution Densities and a Normal	
		Distribution	241
3.	Appro	eximation of the Normal Distribution Density	242
	3.1.	Auxiliary Requirements	242

	3.2.	General Form of the Family of Distribution	
		Densities $F(x; s. l, \sigma)$	243
	3.3.	System of Equations for Determining the	
		Coefficients	243
	3.4.	Solution of the System	244
	3.5.	Approximation Formula for the Normal	
		Distribution	246
	3.6.	Approximation Accuracy	247
	4. Appro	eximation of the Probability Integral	248
	5. Stati	istical Nondifferentiability of the	
	Dist	ributions	249
	6. Set d	of Distribution Densities with Nonzero	
	Exces	ss Coefficients	252
	7. Set o	of Distribution Functions	257
В	ibliograp	bhy	258

	ULTIMATE CAPABILITIES OF Soft X-Ray optics	259
	A.V. Vinogradov, N.N. Zorev, I.V. Kozhevnikov	
1.	Introduction	259
2.	Parallel Beam Production	263
3. (Concentration of Radiation From Point Sources	268

3.	Concentration	of	Radiation	From	Point	Sources	268
4.	Discussion						275
5.	Conclusion						276
Bibl	iography						276

SUBJECT INDEX 2	281
-----------------	-----