TABLE OF CONTENTS

Preface	v
Chapter 0 MATHEMATICAL PRELIMINARIES	
1. Bivectors	1
2. Products of Bivectors	11
3. Trivectors	17
4. Products of Trivectors	23
5. Multivectors and Grassmann Algebra	26
6. Clifford Algebra	30
7. Functions	36
8. Projections, Reflexions and Rotations	39
9. Functions of a Scalar Variable	43
10. Nabla Operator	46
11. Integration	51
12. Cliffor-valued Distributions	56
12.1. Test Functions and Distributions	56
12.2. Fundamental Solutions of Differential Equations	60
Problems	65

Table of Contents

Chapter 1 ELECTROMAGNETIC FIELD

. The Magnetic Field is a Bivector Field				
. Integral Maxwell Equations				
3. Differential Maxwell Equations				
4. Boundary Conditions at an Interface				
5. Finding the Static Fields				
6. Fields Symmetric Under Translations in One Direction	90			
6.1. Electric Field of a Charged Rectilinear Conductor	90			
6.2. Magnetic Field of a Rectilinear Current	91			
6.3. Electromagnetic Field for Sources with Translational				
Symmetry in One Direction	92			
6.4. Electric and Magnetic Fields of an Infinite Plate	94			
6.5. Electric and Magnetic Fields of Two Parallel Plates	96			
6.6. Electric and Magnetic Fields of a Cylindrical Conductor	97			
7. Other Examples of Static Magnetic Fields	99			
7.1. Magnetic Field of Two Adjoining Half-Planes	101			
7.2. Magnetic Field of Tubular Surfaces	102			
7.3. Helical Magnetic Field	102			
7.4. Magnetic Field of Circular Circuit	104			
8. Simplest Non-Static Electromagnetic Fields	107			
8.1. Fields with Plane Symmetry	107			
8.2. Fields with Axial Symmetry	110			
Problems	112			
Chapter 2 ELECTROMAGNETIC POTENTIALS				
1. Introducing Electromagnetic Potentials	114			
2. Finding Potentials from Given Sources	119			
3. Examples of Static Potentials	122			
3.1. Potentials for the Fields of a Rectilinear Conductor	122			
3.2. The Vector Potential of Two Parallel Conductors with				
Currents	124			
3.3. Potentials for the Fields of an Infinite Plate	125			
3.4. Potentials for the Fields of Two Parallel Plates	127			
3.5. Vector Potential of Two Intersecting Plates	128			
3.6. Vector Potential of the Solenoid	130			
4. Multipole Expansion	132			
5. A Geometric Interpretation of the Force Surfaces	138			
6. Energy and Momentum of Electromagnetic Field	141			
Problems	148			

х

Table of Contents	xi
Chapter 3 CHARGES IN THE ELECTROMAGNETIC	FIELD
1. Motion of a Charge in a Uniform Field	151
2. System of Charges in an External Field	157
3. Lagrange and Hamilton Functions for a Charged Particle	164
Problems	170
Chapter 4 PLANE ELECTROMAGNETIC FIELDS	
1. Introducing Plane Electromagnetic Fields	172
2. Travelling Plane Fields	177
3. Reflection and Refraction	185
4. Plane Electromagnetic Waves	191
5. Description of the Polarization	199
Problems	205
Chapter 5 VARIOUS KINDS OF ELECTROMAGNETI WAVES	(C
1. The Plane Harmonic Wave in a Conducting Medium	206
2. The Plane Harmonic Wave in a Nonuniform Medium	211
3. Spherical Waves	219
Problems	226
Chapter 6 SPECIAL RELATIVITY	
1. Lorentz Transformations	227
2. Minkowski Space	235
3. Clifford Algebra of the Minkowski Space	243
4. Kinematics	256
5. Accelerated Motion	262
6. Dynamics of a Single Particle	267
Problems	271
Chapter 7 RELATIVITY AND ELECTRODYNAMICS	
1. The Covariance of Electrodynamics	274
2. Examples of Electromagnetic Fields and Potentials	284
2.1. The Uniform Field	284
2.2. Field of the Electric Charge	285
2.3. Field of the Linear Current	290
2.4. The Plane Field	292
3. Charge in the Electromagnetic Field	295

xii	Table of Contents	
3.1. Charge	in the Uniform Field	295
2.2. Charge	in the Plane Field	300
Problems		304
Appendix I	BEHAVIOUR OF THE INTEGRAL (1.33)	305
Appendix II	THE EXISTENCE OF FORCE SURFACES	307
Appendix III	SPECIAL EXAMPLES OF FORCE SURFACES	310
References		315