CONTENTS | List of Contributors
Preface | | | | |---------------------------------|---|----------|--| | Chap | ter 1 Infrared Optoacoustics S. Perkowitz and G. Busse | | | | _ | | | | | I. | Introduction | 1
4 | | | | II. Optoacoustics and Infrared Fourier Spectroscopy | | | | III. | F | | | | ΙV.
V. | IV. Remote Optoacoustic Detection: Photothermal Infrared Radiometry | | | | ٧. | Future Trends in Infrared Optoacoustics References | 30
31 | | | | References | 51 | | | C1 | | | | | Chap | oter 2 Theory on Distributed Feedback Lasers with Weak | | | | | and Strong Modulations | | | | | S. Gnepf and F. K. Kneubühl | | | | I. | Introduction | 35 | | | II. | Wave Equation | 38 | | | III. | Infinite DFB Structures | 41 | | | IV. | 7. Semi-Infinite DFB Structures | | | | V. | Finite DFB Structures | 55 | | | VI. | | 71 | | | | Appendix A: Identities of Reflection and Transmission Coefficients | 72 | | | | Appendix B: Derivation of the Resonance Condition | 72 | | | | References | 73 | | | | | | | | Chap | oter 3 Freestanding Fine-Wire Grids for Use in Millimeter- | | | | • | and Submillimeter-Wave Spectroscopy | | | | | W. G. Chambers, T. J. Parker, | | | | | and A. E. Costley | | | | ī. | Introduction | 78 | | | II. | | 79 | | | III. | · · · · · · · · · · · · · · · · · · · | | | | IV. | | | | | V. | | | | | | | | | vi CONTENTS | VI. | Appendix: Calculated Characteristic Curves for Grid Performance in Various | 102 | |---------------------------------------|---|--| | | Configurations References | 103
106 | | Chap | oter 4 Mean Distance between Impurity Ions in Solid-State Devices, Signal Vectors in Communication Theory, and Stars in the Solar Neighborhood M. V. Schneider and M. J. Gans | | | I. | M. V. Sennetaer and M. J. Gans Introduction | 107 | | II. | Probability Calculation | 110 | | III. | Monte Carlo Method | 115 | | IV. | Spacing of Impurities in Solid-State Devices | 118 | | V. | Application to Communication Theory | 121 | | VI. | Application to Stellar Statistics | 123 | | VII. | Conclusions | 125
125 | | | Appendix A: The <i>l</i> th Nearest Neighbor in an <i>M</i> -Dimensional Space Appendix B: "NEWSTAR3" | 123 | | | Appendix C: "NEIGHBORS7" | 136 | | | References | 146 | | I.
II.
IV.
V.
VI.
VII. | Hot Electrons in Semiconductors A. A. Andronov Introduction Bulk Ballistic Heating and Population Inversion of Hot Carriers in Semiconductors Processes of FIR Emission by Hot Carriers Investigation of Hot Carriers in Germanium by Spontaneous FIR Emission Tunable Stimulated Millimeter and FIR Emission by Hot Carriers in Germanium Hot-Electron Intervalley Transfer and Submillimeter Waves Concluding Remarks References | 150
151
158
162
168
179
183
185 | | Chap I. II. III. IV. | oter 6 Far-Infrared Optical Properties of Quenched Germanium Takeshi Hattori, Akiyoshi Mitsuishi, and Yoichi Kamiura Introduction Acceptor in Germanium Photothermal Ionization Spectroscopy Sample Preparation and Results of Hall-Effect Measurement | 189
190
194
197 | | | | | | | CONTENTS | vii | |-------|---------------------------------|-----| | V. | Far-Infrared Optical Properties | 199 | | VI. | Model | 214 | | VII. | Application | 215 | | VIII. | Summary and Conclusion | 216 | | | References | 218 | | INDEX | x | 221 |